Question 1: Evaluate the following integrals:

(a)
$$\int \sin^3(x) \cos^2(x) dx$$

(b)
$$\int \tan^4(x) \sec^4(x) dx$$

Question 2: Evaluate the integral

$$\int \frac{x^2}{\sqrt{9-x^2}} \, dx$$

Question 3: Evaluate the integral

$$\int \frac{6}{x^3 + x^2 - 2x} \, dx$$

Question 4: Evaluate the following integrals:

(a)
$$\int x^3 \sqrt{x^2 + 25} \, dx$$

(b)
$$\int \frac{x^3}{x^2-1} dx$$

(c)
$$\int \cos^2(\pi t) dt$$

Question 5: Use the trapezoid rule with n=4 to approximate $\int_0^2 \left(x^4 - \frac{x^3}{2}\right) dx$

[5]

Question 6: The function f(x) has the following values:

Х	0	1/2	1 .	3/2	2
f(x)	-4	2	-2	а	-6

Notice in this table that f(3/2) = a. Using all of the data above and Simpson's Rule resulted in the approximation $\int_0^2 f(x) dx \approx 1$. Determine the value of a.