Real Vector Spaces: Overview

Consider $R^3 = \{ (v_1, v_2, v_3) | v_i \in \mathbb{R} \}$.

 \bullet We saw that R^3 consists of all linear combinations

$$
a\hat{\mathbf{i}} + b\hat{\mathbf{j}} + c\hat{\mathbf{k}}
$$

where a, b and c are scalars.

- R^3 is an example of a **vector space** over \R . We say that R^3 is **spanned** by $\left\{\hat{\mathbf{i}},\hat{\mathbf{j}},\hat{\mathbf{k}}\right\}$.
- For any non-zero vector **u** we saw that

$$
W_1 = \{a \mathbf{u} \mid a \in \mathbb{R}\}
$$

is a line through 0 . Sums and scalar multiples of vectors in W_1 are again in the line W_1 .

• For any non-zero vectors **u** and **w** we saw that

$$
W_2 = \{a \mathbf{u} + b \mathbf{w} \mid a, b \in \mathbb{R}\}
$$

is a plane through $\bf{0}$. Sums and scalar multiples of vectors in W_2 are again in the plane W_2 .

• W_1 and W_2 are called **subspaces** of R^3 .

These ideas are useful for studying other mathematical objects which can can also be viewed as vectors.

Definition of a Vector Space

Let V be a nonempty set of objects (called vectors) on which two operations are defined: addition and scalar multiplication.

Addition assigns to each pair of vectors **u** and **v** a vector denoted $\mathbf{u} + \mathbf{v}$.

Scalar multiplication assigns to each scalar k and vector **u** a vector denoted ku .

If for all vectors **u**, **v**, **w** and scalars k and m the following **axioms** (basic assumptions) are satisfied then we say that V is a **vector space**:

- 1. $\mathbf{u} + \mathbf{v}$ is in V. (Say that V is **closed** under addition.)
- 2. $u + v = v + u$
- 3. $(u + v) + w = u + (v + w)$
- 4. There is an object 0 in V called the zero object such that $0 + u = u + 0$ for every u in V.
- 5. For each **u** in V there is $-u$ such that $u + (-u) = (-u) + u = 0$.
- 6. ku is in V for all scalars k. (Say that V is **closed** under scalar multiplication.)
- 7. $k(u + v) = ku + kv$
- 8. $(k + m)\mathbf{u} = k\mathbf{u} + m\mathbf{u}$
- 9. $k(mu) = (km)u$
- 10. $1u = u$

For us the set of scalars will be the real numbers, in which case V is called a real vector space.

Examples of Vector Spaces

- 1. $Rⁿ$ with the usual addition and scalar multiplication of vectors.
- 2. $R^\infty =$ the set of all infinite sequences of real numbers $\bm u=(u_1,u_2,u_3,...$) with addition and scalar multiplication defined component-wise.
- 3. M_{mn} = the set of all $m \times n$ matrices with matrix addition and scalar multiplication.
- 4. $F(-\infty,\infty) =$ the set of all real valued functions with domain $(-\infty,\infty)$: Suppose f, g are functions with domain ($-\infty, \infty$) and a, b are real scalars. Then af + bg defined by

$$
(af + bg)(x) = af(x) + bg(x)
$$

again has domain $(-\infty,\infty)$.

Here the vectors are functions.

- 5. $C(-\infty,\infty)$ = the set of all real valued continuous functions with domain $(-\infty,\infty)$. This time if f, g are continuous functions with domain $(-\infty,\infty)$ and a, b are real scalars, then af + bg is again continuous with domain $(-\infty, \infty)$.
- 6. $C^m(-\infty,\infty)=$ the set of all real valued functions whose first m derivatives exist and are continuous on $(-\infty, \infty)$.
- 7. P_n = the set of all polynomials of degree less than or equal to n:

$$
p(x)=a_0+a_1x+a_2x^2+\cdots+a_nx^n
$$

where a_0 , a_1 , a_2 , ..., a_n are real numbers.