Question 1: Determine whether $S = \{4 + 6x + x^2, -1 + 4x + 2x^2, 5 + 2x - x^2\}$ is a basis for P_2 .

[5]

Question 2: Find a basis and state the dimension of the subspace V of P_2 consisting of all polynomials $p(x) = a_0 + a_1x + a_2x^2$ for which p(0) = 0.

[5]

Question 3: Let $\mathbf{u}_1 = (2, -6)$, $\mathbf{u}_2 = (3, 8)$, $\mathbf{w} = (2, 2)$ and $S = {\mathbf{u}_1, \mathbf{u}_2}$. Find $(\mathbf{w})_S$. (Recall, $(\mathbf{w})_S$ is the coordinate vector for \mathbf{w} relative to the basis S.)

[5]

Question 4: Find a basis and state the dimension for the solution space of the linear homogeneous system

 $\begin{array}{l} 2x_1+x_2+3x_3+x_4=0\\ x_1 & +5x_3+x_4=0\\ x_1+x_2-2x_3 & =0 \end{array}$

[5]

Question 5: Determine if $\mathbf{b} = \begin{bmatrix} -2 \\ 10 \end{bmatrix}$ is in the column space of $\mathbf{A} = \begin{bmatrix} 1 & 3 \\ 4 & -6 \end{bmatrix}$, and if so, express \mathbf{b} as a linear combination of the columns of \mathbf{A} .

[5]

Question 6: Find a basis for the subspace of R^4 spanned by $\mathbf{v}_1 = (-1, 1, -2, 1)$, $\mathbf{v}_2 = (3, 3, 6, 1)$ and $\mathbf{v}_3 = (-9, -3, -18, 1)$.

Question 7: The matrix $A =$					3	has RREF $\mathbf{R} =$					3	
	1	2	1	0	2		0	0	1	0	-1	
	3	6	1	0	8		0	0	0	0	0	•
	$\lfloor -1$	-2	-2	0	-1		0	0	0	0	0	

(a) Give a basis and state the dimension of the row space of ${\boldsymbol{\mathsf{A}}}$.

[2]

[2]

(b) Give a basis and state the dimension of the column space of $\boldsymbol{\mathsf{A}}$.

(c) Give a basis and state the dimension of the null space of ${\bm A}$. (Equivalently, give a basis and state the dimension of the solution space of ${\bm A} {\bm x} = {\bm 0}$.)

(d) Determine rank(A) and nullity(A).

(e) Determine $rank(\mathbf{A}^{T})$ and $nullity(\mathbf{A}^{T})$.

[1]

[3]

[1]

Question 8: Let the transformation T_1 represent reflection about the *yz*-plane:

$$T_1\left(\left[egin{a}b\\b\\c\end{array}
ight]
ight)=\left[egin{a}-a\\b\\c\end{array}
ight],$$

and T_2 be the transformation which rotates a vector in R^3 counter-clockwise about the z-axis by an angle θ .

(a) Determine the standard matrix $\boldsymbol{\mathsf{A}}$ for the transformation \mathcal{T}_1 .

(b) Determine the standard matrix ${\boldsymbol B}$ for the transformation ${\mathcal T}_2$.

[3]

[3]

(c) Determine the image of the vector (1, 2, -1) if it is first reflected about the *yz*-plane and then rotated about the *z*-axis by $\pi/4$ (or 45°.)

[4]