In the following A, B and C are matrices while a, b and c are scalars. The sizes of matrices are such that each of the expressions is defined.

Basic Properties

1.
$$A + B = B + A$$

2.
$$A + (B + C) = (A + B) + C$$

3.
$$A(BC) = (AB)C$$

4.
$$A(B + C) = AB + AC$$

5.
$$(B + C)A = BA + CA$$

6.
$$A(B - C) = AB - AC$$

7.
$$(B - C)A = BA - CA$$

8.
$$a(B + C) = aB + aC$$

9.
$$a(B - C) = aB - aC$$

10.
$$(a + b)C = aC + bC$$

11.
$$(a - b)C = aC - bC$$

12.
$$a(bC) = (ab)C$$

13.
$$a(BC) = (aB)C = B(aC)$$

Zero Matrices

Definition: The **zero matrix** of size $m \times n$ is the matrix with each entry 0, denoted $0_{m \times n}$. The size is omitted when the context is clear.

Properties:

1.
$$A + 0 = 0 + A = A$$

2.
$$A - 0 = A$$

3.
$$A - A = 0$$

4.
$$0A = 0$$

5. If
$$cA = 0$$
 then $c = 0$ or $A = 0$

Identity Matrices

Definition: The **identity matrix** of order n is the **square** matrix with main diagonal entries of 1 and zeros elsewhere, denoted l_n . The size is omitted when the context is clear.

Example:

$$I_4 = \left[egin{array}{cccc} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{array}
ight]$$

Properties: Here assume *A* is $m \times n$:

- 1. $AI_n = A$
- 2. $I_m A = A$

Inverse of a Matrix

Definition: If A and B are $n \times n$ with the property that AB = BA = I, then B is called the **inverse** of A, written $B = A^{-1}$. That is,

$$AA^{-1} = I$$
 and $A^{-1}A = I$

For a given square matrix A, if A^{-1} exists A is said to be **invertible** or **nonsingular**. If not invertible, A is said to be **singular**.