Math 141 - Matrix Algebra for Engineers

G.Pugh

Mar 14 2014

[Linear Independence,](#page-1-0) [Coordinates and Basis](#page-1-0)

Summary of Important Relationships

Theorem

Suppose **A** is an $n \times n$ matrix. The following statements are equivalent (that is, they are either all true, or all false):

- 1. **A** is invertible (i.e. **A** [−]**¹** exists.)
- 2. $Ax = 0$ has only the trivial solution.
- 3. The RREF form of **A** is **Iⁿ** .
- 4. **A** can be expressed as a product of elementary matrices.
- 5. $Ax = b$ has a unique solution for every $n \times 1$ matrix **b**.
- 6. det(A) \neq 0.

Recap: Linear Independence

Definition

Let

$$
S=\{\boldsymbol{v_1},\boldsymbol{v_2},\ldots,\boldsymbol{v_r}\}
$$

be a non-empty subset of a vector space *V*. *S* is linearly independent if the only solutions to

$$
k_1\mathbf{v_1}+k_2\mathbf{v_2}+\cdots+k_r\mathbf{v_r}=\mathbf{0}
$$

is

$$
k_1=k_2=\cdots=k_r=0
$$

- I This says: v_1, v_2, \ldots, v_r are linearly independent if it is not possible to express any one vector as a linear combination of the others .
- If S is not linearly independent, say that S (or the vectors of *S*) are linearly dependent.

Linear Independence of Functions

\n- Consider
$$
F(-\infty, \infty) = \{f(x) \mid f(x) \text{ has domain } \mathbb{R}\}
$$
, and let $S = \{f_1(x), f_2(x), \ldots, f_n(x)\}$
\n

 \triangleright *S* is linearly independent if whenever

$$
k_1 f_1(x) + k_2 f_2(x) + \cdots + k_n f_n(x) = 0 \leftarrow \text{the zero function}
$$

then $k_1 = k_2 = \cdots = k_n = 0$.

 \triangleright Problem: testing for linear independence of functions using the definition is tricky. There is another way

Wronskian Determinants

Definition:

Suppose $f_1(x)$, $f_2(x)$, ..., $f_n(x)$ are $(n-1)$ -times differentiable on R. The determinant

$$
W(x) = \begin{vmatrix} f_1(x) & f_2(x) & \cdots & f_n(x) \\ f'_1(x) & f'_2(x) & \cdots & f'_n(x) \\ f''_1(x) & f''_2(x) & \cdots & f''_n(x) \\ \vdots & \vdots & \vdots & \vdots \\ f_1^{(n-1)}(x) & f_2^{(n-1)}(x) & \cdots & f_n^{(n-1)}(x) \end{vmatrix}
$$

is called the Wronskian of $f_1(x)$, $f_2(x)$, ..., $f_n(x)$.

Wronskians and Linear Independence

Theorem

Suppose $f_1(x)$, $f_2(x)$, ..., $f_n(x)$ have $(n-1)$ continuous derivatives on R. If $W(x) \neq 0$ for at least one $x \in \mathbb{R}$ then ${f_1(x), f_2(x), \ldots, f_n(x)}$ is a linearly independent set.

Caution: if $W(x) = 0$ for every x then no conclusion can be drawn about linear independence.

Wronskians: Example

Example

Is $S = \{t, e^{-t}, e^{t}\}$ a linearly independent set?

Solution

Here
$$
f_1(t) = t
$$
, $f_2(t) = e^{-t}$, $f_3(t) = e^t$.

$$
W(t) = \begin{vmatrix} t & e^{-t} & e^{t} \\ 1 & -e^{-t} & e^{t} \\ 0 & e^{-t} & e^{t} \end{vmatrix} = t(-e^{-t}e^{t} - e^{-t}e^{t}) - 1(e^{-t}e^{t} - e^{-t}e^{t}) = -2t
$$

Since $W(t) = -2t \neq 0$ for at least one real *t* is follows that $S = \{t, e^{-t}, e^{t}\}\$ is a linearly independent set.

Proof of Theorem

To show that $W(x) \neq 0$ implies linear independence of $f_1(x)$, $f_2(x)$, ..., $f_n(x)$, we will prove the contrapositive:

If $f_1(x)$, $f_2(x)$, ..., $f_n(x)$ are linearly dependent, then $W(x)$ must be zero.

Suppose $f_1(x)$, $f_2(x)$, ..., $f_n(x)$ are linearly dependent. Then there are scalars (not all zero) so that

 $k_1 f_1(x) + k_2 f_2(x) + \cdots + k_n f_n(x) = 0 \leftarrow$ the zero function

Differentiating both sides of this equation (*n* − 1) times gives a system of equations:

Proof Continued

$$
\begin{bmatrix}\nf_1(x) & f_2(x) & \cdots & f_n(x) \\
f'_1(x) & f'_2(x) & \cdots & f'_n(x) \\
f''_1(x) & f''_2(x) & \cdots & f''_n(x) \\
\vdots & \vdots & \vdots & \vdots \\
f_1^{(n-1)}(x) & f_2^{(n-1)}(x) & \cdots & f_n^{(n-1)}(x)\n\end{bmatrix}\n\begin{bmatrix}\nk_1 \\
k_2 \\
k_3 \\
\vdots \\
k_n\n\end{bmatrix} =\n\begin{bmatrix}\n0 \\
0 \\
\vdots \\
0 \\
\vdots \\
0\n\end{bmatrix}
$$

Now $W(x)$ (= the determinant of the square matrix) must be zero, since otherwise this system would have the unique solution $k_1 = k_2 = \cdots = k_n = 0$, contrary to our assumption.

Coordinates and Basis in Vector Spaces

 \blacktriangleright We saw that R^3 consists of all **linear combinations**

 $u = ai + bi + ck$

where *a*, *b* and *c* are scalars.

- \blacktriangleright Here $\{i, j, k\}$ is a basis for R^3 .
- \blacktriangleright The scalars *a*, *b*, *c* are the coordinates of **u**.
- \triangleright We wish to generalize this idea.

Basis for a vector space

Definition:

Suppose

$$
S=\{v_1,v_2,\ldots,v_n\}
$$

is a finite subset of a vector space *V*.

S is called a basis for *V* if

1. *S* is linearly independent, and

2. $V = span(S)$

Basis Examples

- \bullet **i** = (1,0,0), **j** = (0,1,0), **k** = (0,0,1) is called the standard basis for *R* 3 .
- \blacktriangleright More generally, the set of *n*-tuples

$$
\bm{e_1} = (1,0,0,\ldots,0), \bm{e_2} = (0,1,0,\ldots,0),\ldots,\bm{e_n} = (0,0,0,\ldots,1)
$$

is called the standard basis for *R n* .

$$
\blacktriangleright S = \{1, x, x^2, \ldots, x^n\} \text{ is a basis for } P_n.
$$

Coordinates Relative to a Basis.

Theorem

If $S = \{v_1, v_2, \ldots, v_n\}$ is a basis for a vector space V, then every vector **v** in *V* has a unique representation as a linear combination of vectors from *S*:

$$
\mathbf{v}=c_1\mathbf{v_1}+c_2\mathbf{v_2}+\cdots+c_n\mathbf{v_n}
$$

Definition

If $S = \{v_1, v_2, \ldots, v_n\}$ is a basis for a vector space V and

$$
\boldsymbol{v}=c_1\boldsymbol{v_1}+c_2\boldsymbol{v_2}+\cdots+c_n\boldsymbol{v_n}\;,
$$

the scalars c_1, \ldots, c_n are called the coordinates of **v** relative to S, and we write

$$
(\boldsymbol{v})_S=(c_1,c_2,\ldots,c_n)
$$

Dimension of a Vector Space

Definition

Let *V* be a vector space with basis $S = \{v_1, v_2, \ldots, v_n\}$. The dimension of *V* is *n*, and we write

 $dim(V) = n$

(the zero vector space is defined to have dimension zero.)

For this definition to be unambiguous:

Theorem

Let *V* be a vector space with basis $S = \{v_1, v_2, \ldots, v_n\}$. Then every basis for *V* contains *n* vectors.