
Math 141 - Matrix Algebra for Engineers

G.Pugh

Mar 14 2014

1 / 15



Linear Independence,
Coordinates and Basis

2 / 15



Summary of Important Relationships

Theorem

Suppose A is an n × n matrix. The following statements are
equivalent (that is, they are either all true, or all false):

1. A is invertible (i.e. A−1 exists.)

2. Ax = 0 has only the trivial solution.

3. The RREF form of A is In .

4. A can be expressed as a product of elementary matrices.

5. Ax = b has a unique solution for every n × 1 matrix b .

6. det(A) 6= 0 .
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Recap: Linear Independence
I Definition

Let
S = {v1,v2, . . . ,vr}

be a non-empty subset of a vector space V .
S is linearly independent if the only solutions to

k1v1 + k2v2 + · · ·+ kr vr = 0

is
k1 = k2 = · · · = kr = 0

I This says: v1,v2, . . . ,vr are linearly independent if it is not
possible to express any one vector as a linear combination
of the others .

I If S is not linearly independent, say that S (or the vectors
of S) are linearly dependent.
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Linear Independence of Functions

I Consider F (−∞,∞) = {f (x) | f (x) has domain R}, and let

S = {f1(x), f2(x), . . . , fn(x)}

I S is linearly independent if whenever

k1f1(x) + k2f2(x) + · · ·+ knfn(x) = 0← the zero function

then k1 = k2 = · · · = kn = 0 .

I Problem: testing for linear independence of functions using
the definition is tricky. There is another way
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Wronskian Determinants

Definition:
Suppose f1(x), f2(x), . . . , fn(x) are (n − 1)-times differentiable
on R. The determinant

W (x) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f1(x) f2(x) · · · fn(x)

f ′1(x) f ′2(x) · · · f ′n(x)

f ′′1 (x) f ′′2 (x) · · · f ′′n (x)
...

...
...

...
f (n−1)
1 (x) f (n−1)

2 (x) · · · f (n−1)
n (x)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
is called the Wronskian of f1(x), f2(x), . . . , fn(x) .
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Wronskians and Linear Independence

Theorem

Suppose f1(x), f2(x), . . . , fn(x) have (n − 1) continuous
derivatives on R. If W (x) 6= 0 for at least one x ∈ R then
{f1(x), f2(x), . . . , fn(x)} is a linearly independent set.

Caution: if W (x) = 0 for every x then no conclusion can be
drawn about linear independence.
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Wronskians: Example
Example

Is S =
{

t ,e−t ,et} a linearly independent set?

Solution

Here f1(t) = t , f2(t) = e−t , f3(t) = et .

W (t) =

∣∣∣∣∣∣∣∣∣
t e−t et

1 −e−t et

0 e−t et

∣∣∣∣∣∣∣∣∣ = t(−e−tet−e−tet)−1(e−tet−e−tet) = −2t

Since W (t) = −2t 6= 0 for at least one real t is follows that
S =

{
t ,e−t ,et} is a linearly independent set.
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Proof of Theorem

To show that W (x) 6= 0 implies linear independence of
f1(x), f2(x), . . . , fn(x), we will prove the contrapositive:

If f1(x), f2(x), . . . , fn(x) are linearly dependent, then W (x) must
be zero.

Suppose f1(x), f2(x), . . . , fn(x) are linearly dependent. Then
there are scalars (not all zero) so that

k1f1(x) + k2f2(x) + · · ·+ knfn(x) = 0← the zero function

Differentiating both sides of this equation (n − 1) times gives a
system of equations:
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Proof Continued



f1(x) f2(x) · · · fn(x)

f ′1(x) f ′2(x) · · · f ′n(x)

f ′′1 (x) f ′′2 (x) · · · f ′′n (x)
...

...
...

...
f (n−1)
1 (x) f (n−1)

2 (x) · · · f (n−1)
n (x)





k1

k2

k3
...

kn


=



0

0

0
...

0



Now W (x) (= the determinant of the square matrix) must be
zero, since otherwise this system would have the unique
solution k1 = k2 = · · · = kn = 0, contrary to our assumption.
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Coordinates and Basis in Vector Spaces

I We saw that R3 consists of all linear combinations

u = a i + b j + c k

where a, b and c are scalars.

I Here {i, j,k} is a basis for R3 .

I The scalars a,b, c are the coordinates of u .

I We wish to generalize this idea.
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Basis for a vector space

Definition:

Suppose
S = {v1,v2, . . . ,vn}

is a finite subset of a vector space V .

S is called a basis for V if

1. S is linearly independent, and

2. V = span(S)
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Basis Examples

I i = (1,0,0), j = (0,1,0), k = (0,0,1) is called the
standard basis for R3 .

I More generally, the set of n-tuples

e1 = (1,0,0, . . . ,0),e2 = (0,1,0, . . . ,0), . . . ,en = (0,0,0, . . . ,1)

is called the standard basis for Rn .

I S =
{

1, x , x2, . . . , xn} is a basis for Pn .
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Coordinates Relative to a Basis.
Theorem

If S = {v1,v2, . . . ,vn} is a basis for a vector space V , then
every vector v in V has a unique representation as a linear
combination of vectors from S:

v = c1v1 + c2v2 + · · ·+ cnvn

Definition

If S = {v1,v2, . . . ,vn} is a basis for a vector space V and

v = c1v1 + c2v2 + · · ·+ cnvn ,

the scalars c1, . . . , cn are called the coordinates of v relative to
S, and we write

(v)S = (c1, c2, . . . , cn)
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Dimension of a Vector Space

Definition

Let V be a vector space with basis S = {v1,v2, . . . ,vn}. The
dimension of V is n, and we write

dim(V ) = n

(the zero vector space is defined to have dimension zero.)

For this definition to be unambiguous:

Theorem

Let V be a vector space with basis S = {v1,v2, . . . ,vn}. Then
every basis for V contains n vectors.
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