(1) Determine if the following vectors form a basis for R^3 : $\{(3,1,-4),(2,5,6),(1,4,8)\}$.

[4]

(2) Let $\mathbf{v}=(2,-1,3)$ and $S=\{\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3\}$ where $\mathbf{v}_1=(1,0,0),\ \mathbf{v}_2=(2,2,0)$ and $\mathbf{v}_3=(3,3,3).$ Determine $(\mathbf{v})_S$, the coordinates of \mathbf{v} relative to the basis S.

[5]

- (3) Find a basis for the following subspaces of R^3 :
 - (i) The plane 3x 2y + 5z = 0

[3]

(ii) The line x = 2t, y = -t, z = 4t