Math 141 - Matrix Algebra for Engineers

G.Pugh

Jan 17 2013

Matrices and Matrix Operations

Matrices

Matrices arise in other areas of mathematics. Let's study properties of matrices as mathematical objects in their own right

Definition: A rectangular array of numbers consisting of *m* horizontal rows and *n* vertical columns

$$A = \left[\begin{array}{cccc} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{array} \right]$$

is called an $m \times n$ matrix or matrix of size $m \times n$. For entry a_{ij} , i is the row subscript, while j is the column subscript.

A general matrix is sometimes denoted $[a_{ij}]_{m \times n}$.

Matrix Examples

Let

$$B = \left[\begin{array}{ccc} 1 & 6/7 & 4 \\ 1/2 & -7 & 3 \end{array} \right] .$$

The size of *B* is 2×3 . A couple of entries of *B* are

$$b_{23}=3, \quad b_{21}=1/2.$$

Row and Column Vectors

Let

$$\mathbf{p} = \begin{bmatrix} 3 & -4 & \pi \end{bmatrix}$$
.

p is called a *row matrix* or *row vector*. Here $p_1 = 3$, $p_2 = -4$ and $p_3 = \pi$.

Let

$$\mathbf{q} = \left[\begin{array}{c} 0 \\ 2 \\ e \end{array} \right] .$$

q is called a *column matrix* or *column vector*. Here $q_1 = 0$, $q_2 = 2$ and $q_3 = e$.

Example

Example: Construct $[a_{ij}]_{4\times 3}$ if $a_{ij} = \frac{1}{i+j}$.

Solution: Let $A = [a_{ij}]_{4\times3}$. The entries of A are functions of their row and column positions; that is, $a_{ij} = 1/(i+j)$ is a function of the two variables i = 1, 2, 3, 4 and j = 1, 2, 3:

$$a_{11} = \frac{1}{1+1} = \frac{1}{2}$$
, $a_{12} = \frac{1}{1+2} = \frac{1}{3}$, $a_{13} = \frac{1}{1+3} = \frac{1}{4}$,

and so on. Computing all of the entries in this way we have

$$A = \begin{bmatrix} \frac{1}{1+1} & \frac{1}{1+2} & \frac{1}{1+3} \\ \frac{1}{2+1} & \frac{1}{2+2} & \frac{1}{2+3} \\ \frac{1}{3+1} & \frac{1}{3+2} & \frac{1}{3+3} \\ \frac{1}{4+1} & \frac{1}{4+2} & \frac{1}{4+3} \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & \frac{1}{3} & \frac{1}{4} \\ \frac{1}{3} & \frac{1}{4} & \frac{1}{5} \\ \frac{1}{4} & \frac{1}{5} & \frac{1}{6} \\ \frac{1}{5} & \frac{1}{6} & \frac{1}{7} \end{bmatrix}.$$

Square Matrices

A matrix with the same number n of rows and columns is called a **square matrix** of order n.

For example,

$$A = \left[\begin{array}{rrr} 1 & -2 & 1 \\ -2 & 3 & 1 \\ 5 & -7 & -3 \end{array} \right]$$

Here the entries $a_{11} = 1$, $a_{22} = 3$, and $a_{33} = -3$ (reading from upper-left to lower-right) form the *main diagonal* of A.

Equality of Matrices

The matrices $A = [a_{ij}]$ and $B = [b_{ij}]$ are said to be **equal** if A and B have the same size and $a_{ij} = b_{ij}$ for each i and j.

Example:

$$\left[\begin{array}{cc} 2 & 3 \\ 8 & 7 \end{array}\right] = \left[\begin{array}{cc} 1+1 & 3 \\ 16/2 & 9-2 \end{array}\right]$$

but

$$\left[\begin{array}{c}2\\2\end{array}\right]\neq\left[\begin{array}{cc}2&2\end{array}\right]$$

since the sizes of are not the same: $\begin{bmatrix} 2 \\ 2 \end{bmatrix}$ is size 2 × 1 while $\begin{bmatrix} 2 & 2 \end{bmatrix}$ is size 1 × 2.

Matrix Addition

Let
$$A = [a_{ij}]_{m \times n}$$
 and $B = [b_{ij}]_{m \times n}$. Then

$$A+B=[a_{ij}+b_{ij}]_{m\times n}.$$

That is, provided A and B are the same size, the matrix C = A + B is simply the $m \times n$ matrix formed by adding the corresponding entries of A and B: $c_{ij} = a_{ij} + b_{ij}$.

Example: Let

$$A = \begin{bmatrix} 3 & 0 & -2 \\ 4 & 3 & 1 \end{bmatrix} , \qquad B = \begin{bmatrix} -11 & 1 & 12 \\ 7 & -2 & 13 \end{bmatrix} .$$

Then

$$A+B = \left[\begin{array}{ccc} 3+(-11) & 0+1 & (-2)+12 \\ 4+7 & 3+(-2) & 1+13 \end{array} \right] = \left[\begin{array}{ccc} -8 & 1 & 10 \\ 11 & 1 & 14 \end{array} \right] \; .$$

Matrix Subtraction

If A and B are the same size, the matrix C = A - B is the $m \times n$ matrix formed by subtracting the entries of B from the corresponding entries of A: $c_{ij} = a_{ij} - b_{ij}$.

Example: Let

$$A = \begin{bmatrix} 3 & 0 & -2 \\ 4 & 3 & 1 \end{bmatrix} , \qquad B = \begin{bmatrix} -11 & 1 & 12 \\ 7 & -2 & 13 \end{bmatrix} .$$

Then

$$A-B = \begin{bmatrix} 3-(-11) & 0-1 & (-2)-12 \\ 4-7 & 3-(-2) & 1-13 \end{bmatrix} = \begin{bmatrix} 14 & -1 & -14 \\ -3 & 5 & -12 \end{bmatrix}.$$

Scalar Multiplication

Let $A = [a_{ij}]_{m \times n}$ be a matrix and let k be a real number (a **scalar**). Then C = kA is the matrix with entry $c_{ij} = ka_{ij}$.

For example, for

$$A = \left[\begin{array}{cc} 1 & 6 \\ 4 & 2 \end{array} \right] ,$$

multiplication by the scalar 1/2 gives

$$\frac{1}{2} A = \frac{1}{2} \left[\begin{array}{cc} 1 & 6 \\ 4 & 2 \end{array} \right] = \left[\begin{array}{cc} (1/2)(1) & (1/2)(6) \\ (1/2)(4) & (1/2)(2) \end{array} \right] = \left[\begin{array}{cc} 1/2 & 3 \\ 2 & 1 \end{array} \right] \; .$$

Matrix Multiplication

Definition: Let $A = [a_{ij}]_{m \times p}$ and $B = [b_{ij}]_{p \times n}$. Then we define the product C = AB as the matrix with entries

$$c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + a_{i3}b_{3j} + \cdots + a_{ip}b_{pj}$$
.

Notice:

- (i) $a_{i1}, a_{i2}, a_{i3}, \dots, a_{ip}$ are the elements of row i of A, while $b_{1j}, b_{2j}, b_{3j}, \dots, b_{pj}$ are the elements of column j of B.
- (ii) For matrix multiplication to be defined, the number of columns of A must be the same as the number of rows of B.

Matrix Multiplication Example

Let

$$A = \begin{bmatrix} 2 & 3 \\ 1 & -2 \\ 6 & 4 \end{bmatrix}, \qquad B = \begin{bmatrix} 3 & 7 \\ -2 & 5 \end{bmatrix}.$$

Then

$$AB = \begin{bmatrix} (2)(3) + (3)(-2) & (2)(7) + (3)(5) \\ (1)(3) + (-2)(-2) & (1)(7) + (-2)(5) \\ (6)(3) + (4)(-2) & (6)(7) + (4)(5) \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 29 \\ -1 & -3 \\ 10 & 62 \end{bmatrix}.$$

Notice A is size 3×2 , B is size 2×2 , and the product AB is size 2×2 .

Matrix Multiplication: Another way to think about it

The process of multiplying matrices can be described in terms of a certain type of product. Let **R** and **C** be the row and column matrices

$$\mathbf{r} = \left[\begin{array}{ccc} r_1 & r_2 & \cdots & r_p \end{array} \right] \text{ and } \mathbf{c} = \left[\begin{array}{c} c_1 \\ c_2 \\ \vdots \\ c_p \end{array} \right].$$

The expression $r_1c_1 + r_2c_2 + \cdots + r_pc_p$ is called the **dot product** of **r** and **c**. Using this notion, the product of general matrices A and B can be described as the matrix D = AB which has entries

 $d_{ij} = \text{dot product of row } i \text{ of } A \text{ and column } j \text{ of } B$.

Transpose of a Matrix

Suppose *A* is an $m \times n$ matrix. The **transpose** of *A*, denoted A^{T} , is the matrix of size $n \times m$ obtained by interchanging the rows and columns of *A*. For example, if

$$A = \left[\begin{array}{rrr} 1 & -2 & 1 \\ -2 & 3 & 1 \\ 5 & -7 & -3 \end{array} \right]$$

then

$$A^{\mathsf{T}} = \left[\begin{array}{rrr} 1 & -2 & 5 \\ -2 & 3 & -7 \\ 1 & 1 & -3 \end{array} \right] \ .$$

Matrix Transpose Example

Let

$$B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \qquad$$
 size 2×3

then

$$B^{\mathsf{T}} = \left[egin{array}{ccc} 1 & 4 \ 2 & 5 \ 3 & 6 \end{array}
ight] \qquad \left.
ight\} \ \operatorname{size} \ 3 imes 2 \ \end{array}$$

Using this last example, notice that

$$(B^{\mathsf{T}})^{\mathsf{T}} = \left[\begin{array}{ccc} 1 & 2 & 3 \\ 4 & 5 & 6 \end{array} \right] = B.$$

This turns out to be true in general: for any matrix A, $(A^T)^T = A$.

Trace of a Matrix

If A is a square matrix, the **trace** of A, written tr(A) is the sum of the entries on the main diagonal of A.

Example: For

$$A = \left[\begin{array}{rrr} 1 & -2 & 1 \\ -2 & 3 & 1 \\ 5 & -7 & -3 \end{array} \right] ,$$

$$tr(A) = 1 + 3 + (-3) = 1$$

Systems of Linear Equations as Matrix Products

Matrix multiplication can be used to express systems of linear equations.

The system

$$5x - 2y + z = -2$$

 $-x + 11y - 13z = 6$
 $x + y + z = 1$

is equivalent to

$$\begin{bmatrix} 5 & -2 & 1 \\ -1 & 11 & -13 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -2 \\ 6 \\ 1 \end{bmatrix}$$

Systems of Linear Equations as Matrix Products

That is ...

$$\begin{bmatrix} 5 & -2 & 1 \\ -1 & 11 & -13 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -2 \\ 6 \\ 1 \end{bmatrix}$$

is equivalent to

$$A\mathbf{x} = \mathbf{b}$$

where A is the coefficient matrix of the system, and

$$\mathbf{x} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} -2 \\ 6 \\ 1 \end{bmatrix}$$