$$y + 2z + 2w = -6$$

x + 2y + 5z + 3w = 2
2x + y + 5z + w = -3

Math 141 - Final Exam

Question 2: Each of the following matrices in reduced row echelon form (RREF) was obtained from a system of linear equations. For each of the reduced matrices,

- (a) If the solution is unique, write the solution.
- (b) If there is more than one solution, properly express the solution using parameters.
- (c) If there is no solution, then state "no solution"
- (i) $\begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ (the variables here are x, y, z.)

(ii)
$$\begin{bmatrix} 1 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
 (the variables here are *x*, *y*, *z*.)

(iii) $\begin{bmatrix} 1 & 0 & 4 & 5 & 1 \\ 0 & 1 & 1 & 3 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$ (the variables here are x, y, z, w.)

(iv)
$$\begin{bmatrix} 1 & 0 & 0 & 5 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 2 \end{bmatrix}$$
 (the variables here are x, y, z.)

[1]

Question 3: If the system

$$2x - 4y = 1$$

 $ax + 3y = 2$

has no solution what must be the value of a?

[1]

[1]

[1]

Question 4: For this problem use the following matrices:

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 \\ 3 & 5 & 4 \\ 3 & 6 & 5 \end{bmatrix} \quad \mathbf{B} = \begin{bmatrix} 3 & -2 & 0 \\ -1 & -1 & 4 \end{bmatrix} \quad \mathbf{C} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}$$

(a) Compute $\mathbf{AB}^{\mathsf{T}} - 2\mathbf{C}$ if it is defined.

(b) Compute tr ($(\mathbf{A} + \mathbf{I})(\mathbf{A} - \mathbf{I})$) if it is defined.

(c) Determine \mathbf{A}^{-1} if it exists.

[3]

[2]

Apr 22 2013

Question 6: Use Cramer's rule to solve for *y*:

| 1

1

[4]

Question 7: Suppose \mathbf{u} , \mathbf{v} and \mathbf{w} are any vectors in R^3 . Circle true (T) or false (F), as appropriate, for the following statements:

(i) $\mathbf{u} \cdot (\mathbf{u} \times \mathbf{v}) = 0$	ΤF
(ii) $\mathbf{u} \times (\mathbf{u} \cdot \mathbf{v}) = 0$	ΤF
(iii) $\mathbf{u} \cdot \mathbf{u} = \ \mathbf{u}\ ^2$	ΤF
(iv) $\text{proj}_{\mathbf{u}}\mathbf{v} = \text{proj}_{\mathbf{v}}\mathbf{u}$	ΤF
(v) If ${\bf u},{\bf v}$ and ${\bf w}$ are linearly independent, then ${\bf u} \cdot ({\bf v} \times {\bf w}) = 0$	ΤF

Question 8: Determine the equation of the line in R^3 that contains the point (-1, 6, 0) and is orthogonal to the plane 4x + 2y - z = 5. You may state your answer in either vector or parametric form.

[3]

[5]

Question 9: Find an equation of the plane passing through the points $P_1(-1, 0, 4)$, $P_2(-1, 4, 3)$ and $P_3(0, 6, -2)$. State your answer in the form

$$ax + by + cz = d$$

for appropriate constants a, b, c and d. (We saw three different methods for doing this problem; use whichever method you like.)

Question 10: Suppose $\mathbf{v}_1 = (1, a, 2)$, $\mathbf{v}_2 = (0, 2, a)$ and $\mathbf{v}_3 = (1, 1, 1)$ are linearly dependent. What are the possible values for *a*?

[4]

Question 11: Let $\mathbf{u}_1 = (1, -1)$, $\mathbf{u}_2 = (1, 1)$ and $\mathbf{w} = (2, -3)$. Find the coordinate vector of \mathbf{w} relative to the basis $S = {\mathbf{u}_1, \mathbf{u}_2}$. That is, find $(\mathbf{w})_S$.

Question 12: Let $\mathbf{p}_1 = 1 + 2x + x^2$ and $\mathbf{p}_2 = 2 - x^2$. Find a third vector \mathbf{p}_3 so that $S = {\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3}$ is a basis for P_2 . (There are many possible correct answers here; give one answer with justification.)

Question 13: The matrix $A =$	Γ 1	2	0	0	3 -	has RREF $\mathbf{R} =$	1	2	0	0	3]	
	1	2	1	0	2		0	0	1	0	-1	
	3	6	1	0	8		0	0	0	0	0	•
	1	-2	-2	0	$^{-1}$		0	0	0	0	0	

(a) Give a basis and state the dimension of the row space of ${\boldsymbol{\mathsf{A}}}$.

[2]

[2]

(b) Give a basis and state the dimension of the column space of $\boldsymbol{\mathsf{A}}$.

(c) Give a basis and state the dimension of the null space of ${\bf A}$. (Equivalently, give a basis and state the dimension of the solution space of ${\bf Ax}={\bf 0}$.)

(d) Determine rank(A) and nullity(A).

(e) Determine $rank(\mathbf{A}^{T})$ and $nullity(\mathbf{A}^{T})$.

[1]

[3]

[1]

Question 14:

Let the transformation T_1 represent reflection about the *yz*-plane:

$$T_1\left(\left[egin{a}b\\b\\c\end{array}
ight]
ight)=\left[egin{array}{c}-a\\b\\c\end{array}
ight],$$

and T_2 be the transformation which rotates a vector in R^3 counter-clockwise about the z-axis by an angle θ .

(a) Determine the standard matrix $\boldsymbol{\mathsf{A}}$ for the transformation \mathcal{T}_1 .

(b) Determine the standard matrix ${f B}$ for the transformation ${\cal T}_2$.

[3]

[2]

(c) Determine the image of the vector (1, 2, -1) if it is first reflected about the *yz*-plane and then rotated about the *z*-axis by $\pi/4$ (or 45°.)

[3]

(d) For any vector (a, b, c), will applying the transformation T_1 followed by T_2 produce the same result as first applying T_2 followed by T_1 ? Explain using matrices.

Question 15: Find the eigenvalues and corresponding eigenvectors (that is, the eigenpairs) for

$$\mathbf{A} = \left[\begin{array}{cc} 2 & -1 \\ -2 & 3 \end{array} \right]$$