1 General Derivative Rules

1. Constant Rule $\quad \frac{d}{d x}[c]=0$
2. Constant Multiple Rule

$$
\frac{d}{d x}[c f(x)]=c f^{\prime}(x)
$$

3. Sum Rule

$$
\frac{d}{d x}[f(x)+g(x)]=f^{\prime}(x)+g^{\prime}(x)
$$

4. Difference Rule

$$
\frac{d}{d x}[f(x)-g(x)]=f^{\prime}(x)-g^{\prime}(x)
$$

5. Product Rule

$$
\frac{d}{d x}[f(x) g(x)]=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)
$$

6. Quotient Rule

$$
\frac{d}{d x}\left[\frac{f(x)}{g(x)}\right]=\frac{g(x) f^{\prime}(x)-f(x) g^{\prime}(x)}{[g(x)]^{2}}
$$

7. Chain Rule

$$
\frac{d}{d x}[f(g(x))]=f^{\prime}(g(x)) g^{\prime}(x)
$$

2 Derivative Rules for Particular Functions

Basic Rule

1. Powers
2. Sine
3. Cosine
4. Tangent
5. Secant
6. Cosecant
7. Cotangent
8. Exponential (base e) $\frac{d}{d x}\left[e^{x}\right]=e^{x}$
9. Exponential (base a) $\frac{d}{d x}\left[a^{x}\right]=a^{x} \ln a$
10. Natural Logarithm $\quad \frac{d}{d x}[\ln x]=\frac{1}{x}$
11. Logarithm (base a) $\frac{d}{d x}\left[\log _{a} x\right]=\frac{1}{x \ln a}$

Chain Rule Form

$\frac{d}{d x}\left[(f(x))^{n}\right]=n(f(x))^{n-1} f^{\prime}(x)$
$\frac{d}{d x}[\sin (f(x))]=\cos (f(x)) f^{\prime}(x)$
$\frac{d}{d x}[\cos (f(x))]=-\sin (f(x)) f^{\prime}(x)$
$\frac{d}{d x}[\tan (f(x))]=\sec ^{2}(f(x)) f^{\prime}(x)$
$\frac{d}{d x}[\sec (f(x))]=\sec (f(x)) \tan (f(x)) f^{\prime}(x)$
$\frac{d}{d x}[\csc (f(x))]=-\csc (f(x)) \cot (f(x)) f^{\prime}(x)$
$\frac{d}{d x}[\cot (f(x))]=-\csc ^{2}(f(x)) f^{\prime}(x)$
$\frac{d}{d x}\left[e^{(f(x))}\right]=e^{(f(x))} f^{\prime}(x)$
$\frac{d}{d x}\left[a^{(f(x))}\right]=a^{(f(x))} \ln a f^{\prime}(x)$
$\frac{d}{d x}[\ln f(x)]=\frac{1}{f(x)} f^{\prime}(x)$
$\frac{d}{d x}\left[\log _{a} f(x)\right]=\frac{1}{f(x) \ln a} f^{\prime}(x)$

3 General Antiderivative Rules

Let $F(x)$ be any antiderivative of $f(x)$. That is, $F^{\prime}(x)=f(x)$. The most general antiderivative of $f(x)$ is then $F(x)+C$.

	Original Function	General Antiderivative
1. Constant Rule	c (a constant)	$c x+C$
2. Constant Multiple Rule	$c f(x)$	$c F(x)+C$
3. Sum Rule	$f(x)+g(x)$	$F(x)+G(x)+C$
4. Difference Rule	$f(x)-g(x)$	$F(x)-G(x)+C$

Original Function

c (a constant)
$f(x)-g(x)$
$F(x)-G(x)+C$

4 Antiderivative Rules for Particular Functions

1. Powers $(n \neq-1)$

Original Function

x^{n}
$\frac{1}{x}$
$\sin x$
$\cos x$
$\sec ^{2} x$
$\sec x \tan x$
$\csc x \cot x$
$\csc ^{2} x$
e^{x}
a^{x}

General Antiderivative
$\frac{x^{n+1}}{n+1}+C$
$\ln |x|+C$
$-\cos x+C$
$\sin x+C$
$\tan x+C$
$\sec x+C$
$-\csc x+C$
$-\cot x+C$
$e^{x}+C$
$\frac{a^{x}}{\ln a}+C$

