(1) [5] Let f(x) = 2 + x and $g(x) = 4 - x^2$. Determine and simplify $\left(\frac{f}{g}\right)(x)$ and state the domain.

$$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)} = \frac{2+x}{4-x^2}$$

$$= \frac{2+x}{(2-x)(2+x)}$$

$$= \frac{1}{2-x}$$

Domain of
$$f(x)$$
: $(-\infty, \infty)$
Domain of $g(x)$: $(-\infty, \infty)$
 $g(x) = 0$ at $x = 2, -2$

(2) [5] Let $H(x) = \sec^4(\sqrt{x})$. Find functions f, g and h so that $H = f \circ g \circ h$.

$$h(x) = Jx$$

$$g(x) = sec(x)$$

$$f(x) = x^4$$

(3) [5] A stone is dropped into a lake, creating a circular ripple which travels outward at a speed of 50 cm/s. Determine A(t), the area of the circle as a function of time t. (Hint: first determine r(t), the radius of the circle as a function of time.)

$$V(t) = 50t$$

$$A = \pi v^{2}$$

$$= \pi (vu)^{2}$$

$$= \pi (sot)^{2}$$

$$= 2500 \pi t^{2}$$