Question 1:

(a)[5] Determine
$$\int \frac{\cos(\sqrt{x})}{\sqrt{x} \sin(\sqrt{x})} dx$$

(b)[5] Determine
$$\int \sec^3 x \tan^3 x \, dx$$

Question 2:

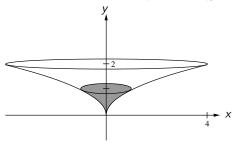
(a)[5] Compute)
$$\int_0^{1/2} \arctan(2x) dx$$

(b)[5] Determine
$$\int \frac{1}{x(x-1)^2} dx$$

Math 101 - Test 3

Question 3:

(a)[5 points] A vessel is formed by rotating the curve $y=\sqrt{x}$ about the y-axis as shown below. The vessel has a top radius of 4 m and a depth of 2 m. If the vessel is initially filled with water to a depth of 1 m, how much work is required to empty the vessel by pumping the water up and over the top rim? Recall that the density of water is $\rho=1000~{\rm kg/m^3}$ and acceleration due to gravity is $g=9.8~{\rm m/s^2}$.



(b)[5 points] Determine the total volume of the vessel described in part (a).

Question 4:

(a)[5] Determine the length of the curve $y = \ln(\cos x)$, $0 \le x \le \pi/3$

(b)[5] Solve the following differential equation:

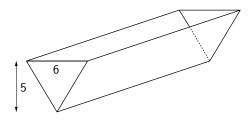
$$(1 + \cos x)y' = e^{-y}\sin x$$
, $y(0) = 0$

You may leave your solution in implicit form (it is not necessary to isolate y in your final answer.)

Math 101 - Test 3 Apr 27 2011

Question 5:

(a)[5 points] A large 5 m deep trough has triangular ends of top width 6 m. If the trough is full of water determine the hydrostatic force (force due to water pressure) exerted on one end of the trough. Recall that the density of water is $\rho=1000~{\rm kg/m^3}$, acceleration due to gravity is $g=9.8~{\rm m/s^2}$, and pressure P as a function of depth h is $P(h)=\rho g h$.



(b)[5 points] Determine the first three nonzero terms of the Maclaurin series for $f(x) = x \sin(x^4)$.

Question 6:

(a)[5 points] Use a Maclaurin series (not L'Hospital's Rule) to evaluate the limit

$$\lim_{x\to 0}\frac{1-\cos x}{1+x-e^x}$$

(b)[2 points] Determine whether the series $\sum_{n=1}^{\infty} \frac{n^2+1}{n^3+1}$ converges or diverges.

(c)[3 points] Determine whether the series $\sum_{n=1}^{\infty} \frac{1}{(n+1)\ln(n+1)}$ converges or diverges.