Math 101 - Test 2

Question 1:

(a)[6] Evaluate
$$\int_0^1 \arctan x \, dx$$

(b)[4] Determine
$$\int \sin^3 x \cos^7 x \, dx$$

Math 101 - Test 2 Mar 2 2011

Question 2 [10]:

Determine $\int \frac{1}{x\sqrt{9-x^2}} dx$. (State your final answer without using inverse hyperbolic functions.)

Math 101 - Test 2 Mar 2 2011

Question 3 [10]:

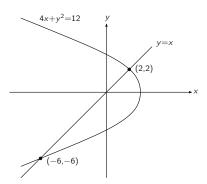
Determine
$$\int \frac{3x^2 + 8}{x^3 + 4x} \, dx \ .$$

Question 4:

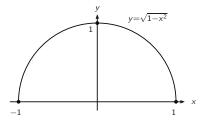
(a)[5 points] Use S_4 , Simpson's rule on four subintervals, to approximate $\int_0^4 \sqrt{1+\sin^2\left(\pi x\right)}\,dx$.

(b)[5 points] The fourth derivative of $f(x) = \sqrt{1 + \sin^2(\pi x)}$ is between -700 and 200 for every x. If we wish to approximate $\int_0^4 \sqrt{1 + \sin^2(\pi x)} \, dx$ with accuracy 0.001 using Simpson's rule, how many subintervals are required?

Question 5:


(a)[5 points] Evaluate the improper integral $\int_2^3 \frac{1}{\sqrt{3-x}} dx$. Show all steps including any required limits.

(b)[5 points] Determine if $\int_{1}^{\infty} \frac{\sin^2 x}{x^2 + \sqrt{x}} dx$ converges or diverges. State reasons for your conclusion.


Math 101 - Test 2

Question 6:

(a)[5 points] Find the area of the region bounded by the curves $4x + y^2 = 12$ and y = x.

(b)[5 points] The base of a solid is the region bounded between the curve $y = \sqrt{1-x^2}$ and the x axis. Cross-sections perpendicular to both the base and the x-axis are squares. Find the volume of the solid.

