Question 1:

(a)[5 points] Evaluate:
$$\lim_{x \to \pi} \frac{\sin^2\left(\frac{x}{2}\right)}{x - \pi}$$

(b)[5 points] Let $f(x) = \frac{1}{x+2}$. Evaluate and simplify the difference quotient $\frac{f(a+h) - f(a)}{h}$.

Question 2:

(a)[5 points]	Evaluate:	$\lim_{t \to 0} \frac{\sin\left(7t\right)}{\tan\left(3t\right)}$
---------------	-----------	--

(b)[5 points] Evaluate: $\lim_{x\to 0} x^6 \cos\left(\frac{6}{x}\right)$ (the Squeeze Theorem may help here).

Question 3:

(a)[5 points] Evaluate:
$$\lim_{x \to 16} \frac{4 - \sqrt{x}}{x - 16}$$

(b)[5 points]	Evaluate:	$\lim_{x \to -3^{-}} \frac{3x+9}{ x+3 }$

Question 4:

(a)[5 points] Evaluate:
$$\lim_{x \to 4} \frac{\sqrt{x^2 + 9} - 4}{x^2 - 3x - 3}$$

(b)[5 points] Evaluate: $\lim_{x \to -5} \frac{x^2 + 3x - 10}{x^2 + 7x + 10}$

Question 5:

(a)[3 points] A right angle triangle has base b and height h which add to 12. Express the area A of the triangle as a function of the base b.

(b)[3 points] Let $H(x) = \csc^2(\sqrt{x^2+1})$ and $h(x) = x^2$. Find functions f and g so that $H = f \circ g \circ h$. (There are several possible correct answers.)

(c)[4 points] Let $f(x) = \frac{1}{x^2}$ and $g(x) = \frac{x}{\sqrt{x-1}}$. Determine, simplify, and find the domain of $(f \circ g)(x)$.