Math 121 - Summary of Limit Laws

G.Pugh

Jan 182010

Limit Laws

Assumptions

In the following, suppose:

- c represents a constant (a fixed number)
- The limits

$$
\lim _{x \rightarrow a} f(x) \quad \text { and } \quad \lim _{x \rightarrow a} g(x)
$$

both exist

Sum Law

- $\lim _{x \rightarrow a}[f(x)+g(x)]=\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow a} g(x)$
- In words: The limit of a sum is the sum of the limits

Difference Law

- $\lim _{x \rightarrow a}[f(x)-g(x)]=\lim _{x \rightarrow a} f(x)-\lim _{x \rightarrow a} g(x)$
- In words: The limit of a difference is the difference of the limits

Constant Multiplier Law

- $\lim _{x \rightarrow a}[c f(x)]=c \lim _{x \rightarrow a} f(x)$
- In words: The limit of a constant times a function is the constant times the limit of the function.

Product Law

- $\lim _{x \rightarrow a}[f(x) g(x)]=\left(\lim _{x \rightarrow a} f(x)\right)\left(\lim _{x \rightarrow a} g(x)\right)$
- In words: The limit of a product is the product of the limits

Quotient Law

- $\lim _{x \rightarrow a}\left[\frac{f(x)}{g(x)}\right]=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)}$ provided $\lim _{x \rightarrow a} g(x) \neq 0$.
- In words: The limit of a quotient is the quotient of the limits

Power Law

- $\lim _{x \rightarrow a}[f(x)]^{n}=\left[\lim _{x \rightarrow a} f(x)\right]^{n}$ where n is a positive integer.
- In words: The limit of a power is the power of the limit

Root Law

- $\lim _{x \rightarrow a} \sqrt[n]{f(x)}=\sqrt[n]{\lim _{x \rightarrow a} f(x)}$ where n is a positive integer, and where $\lim _{x \rightarrow a} f(x)>0$ if n is even.
- In words: The limit of a root is the root of the limit

Particular Limit Results

Constants

- $\lim _{x \rightarrow a} c=c$
- Example: $\lim _{x \rightarrow 3} \sqrt{2 \pi}=\sqrt{2 \pi}$

Limit of $f(x)=x$

- $\lim _{x \rightarrow a} x=a$
- Example: $\lim _{x \rightarrow 5} x=5$

Polynomials

- Using the Sum, Difference, Constant Multiplier and Power Laws:

If $f(x)$ is a polynomial, (for eg. $f(x)=5 x^{3}-\pi x^{2}-\frac{1}{2}$), then $\lim _{x \rightarrow a} f(x)=f(a)$.

- Example:

$$
\lim _{x \rightarrow-1} 5 x^{3}-\pi x^{2}-\frac{1}{2}=5(-1)^{3}-\pi(-1)^{2}-\frac{1}{2}=-\pi-\frac{11}{2}
$$

Rational Functions

- Using the previous result and the Quotient Law:

If $f(x)$ and $g(x)$ are polynomials and $g(a) \neq 0$ then
$\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{f(a)}{g(a)}$.

- Example: $\lim _{x \rightarrow 2} \frac{2 x^{3}-x}{3 x+1}=\frac{2(2)^{3}-(2)}{3(2)+1}=\frac{14}{7}=2$

Trigonometric Functions

- $\lim _{x \rightarrow a} \sin (x)=\sin (a)$
- $\lim _{x \rightarrow a} \cos (x)=\cos (a)$
- Example: $\lim _{x \rightarrow \pi / 6} \sin (x)=\sin (\pi / 6)=\frac{1}{2}$

Direct Substitution Property

- Putting together these limit results we have the Direct Substitution Property:
- If $f(x)$ is a function defined using sums, differences, products or quotients involving polynomials, $\sin (x)$, or $\cos (x)$, and
- if a is in the domain of $f(x)$ (that is, $f(a)$ is defined)
then

$$
\lim _{x \rightarrow a} f(x)=f(a)
$$

- Example:

$$
\lim _{x \rightarrow \pi} \frac{-2 x^{3}-\sin ^{2}(x)}{\cos ^{3}(x)}=\frac{-2 \pi^{3}-\sin ^{2}(\pi)}{\cos ^{3}(\pi)}=\frac{-2 \pi^{3}-0}{(-1)^{3}}=2 \pi^{3}
$$

Some Advice

When evaluating limits, try to apply the Direct Substitution Property first.

If direct substitution fails, then resort to more sophisticated techniques.

