1 First Derivatives and Shapes of Curves

What information does $f^{\prime}(x)$ give us about the shape of the graph of $y=f(x)$? In particular, we wish to determine
(i) the intervals over which the outputs of f are increasing, i.e. the intervals over which the graph of $y=f(x)$ is rising
(ii) the intervals over which the outputs of f are decreasing, i.e. the intervals over which the graph of $y=f(x)$ is falling
(iii) the peaks and valleys between these intervals

Using the following general graph let's introduce some terminology and make some observations:

Here f has domain $D=[a, b]$.

1.1 Definitions and a Theorem

absolute (or global) maximum: f has an absolute maximum of $f(c)$ at $x=c$ if $f(c) \geq f(x)$ for every x in D.
absolute (or global) minimum: f has an absolute minimum of $f(c)$ at $x=c$ if $f(c) \leq f(x)$ for every x in D.
extreme values of f : the absolute maximum of f together with the absolute minimum.
relative (or local) maximum: f has a relative maximum of $f(c)$ at $x=c$ if $f(c) \geq f(x)$ for every x in an open interval containing c.
relative (or local) minimum: f has a relative minimum of $f(c)$ at $x=c$ if $f(c) \leq f(x)$ for every x in an open interval containing c.

So, referring to the graph above, we would say:

- f has an absolute maximum of $f(r)$ at $x=r$;
- f has an absolute minimum of $f(a)$ at $x=a$;
- f has relative maxima of $f(p)$ at $x=p$ and $f(r)$ at $x=r$;
- f has a relative minima of $f(q)$ at $x=q$ and $f(t)$ at $x=t$

Note:
(i) End points can correspond to absolute but not relative maxima or minima.
(ii) A point interior to the interval can correspond to both a relative and absolute maximum or minimum.

Another definition:
critical number: a critical number of a function f is a number c in the domain of f such that
(i) $f^{\prime}(c)=0$, or
(ii) $f^{\prime}(c)$ does not exist

Referring to our graph, $x=p, x=q, x=r, x=s$ and $x=t$ are critical numbers of f. Notice the behaviour of the graph of $y=f(x)$ at each of these critical numbers. Indeed,

Fermat's Theorem: If f has a relative maximum or relative minimum at $x=c$ and if $f^{\prime}(c)$ exists, then $f^{\prime}(c)=0$.

Fermat's Theorem tells us that relative extrema must occur at critical numbers, however it does not say that every critical number corresponds to a relative extremum-look at $x=s$ in our graph above.

1.2 Increasing/Decreasing Test

Recall

$$
f^{\prime}(c)=\text { slope of the tangent line to graph of } y=f(x) \text { at } x=c,
$$

so

$$
\begin{aligned}
f^{\prime}(c)>0 & \Rightarrow \text { outputs of } f \text { are increasing at } x=c \\
& \Rightarrow \text { graph of } f \text { is rising as } x \text { passes through } c \\
f^{\prime}(c)<0 & \Rightarrow \text { outputs of } f \text { are decreasing at } x=c \\
& \Rightarrow \text { graph of } f \text { is falling as } x \text { passes through } c
\end{aligned}
$$

This gives the Test for Intervals of Increase and Decrease of a Function:
(i) If $f^{\prime}(x)>0$ on an interval, then f is increasing on that interval.
(ii) If $f^{\prime}(x)<0$ on an interval, then f is decreasing on that interval.

Observe on our graph: whenever f changes from increasing to decreasing, or vice versa, it does so at a critical number ($x=p, q, r$ and t). However, not every critical number corresponds to such a change: f is decreasing on both sides of $x=s$. Putting all of this together:

Bottom Line: To determine the intervals of increase and decrease of a function f :
(i) Find points at which f^{\prime} changes sign (from positive to negative or vice versa). f^{\prime} can change sign at

- critical numbers
- values of x at which f is not defined
(ii) Test $f^{\prime}(x)$ on the intervals defined by the points from (i).

Once you have determined the intervals of increase/decrease of f, it is easy to read off the relative extrema (that is, the relative maxima and minima) using

The First Derivative Test: Suppose $x=c$ is a critical number of a continuous function f.
(i) If f^{\prime} changes from positive to negative at $x=c$, then f has a relative maximum of $f(c)$ at $x=c$.
(ii) If f^{\prime} changes from negative to positive at $x=c$, then f has a relative minimum of $f(c)$ at $x=c$.
(iii) If f^{\prime} does not change sign at $x=c$, then f has a neither a relative maximum nor relative minimum at $x=c$.

Example 1

Determine the intervals of increase and decrease of $f(x)=3 x^{2 / 3}-x$. State the relative extrema.

Example 2

Determine the intervals of increase and decrease of $f(t)=t+\cos (t)$ on $[-2 \pi, 2 \pi]$. State the relative extrema.

