
The Balloon Shadow Problem

A balloon is released from ground level at night near a 10 m tall lamp post. A few moments later the balloon is 6 m above the ground and rising vertically at 1 m/s, while the balloon's horizontal distance to the lamp post is 5 m and the wind is increasing that distance by 1/2 m/s. How fast is the balloon's shadow moving along the ground at that same instant?

Let $\chi(t)$ = horizontal distance to lamp post at time t $\chi(t)$ = vertical distance to ground at time t $\omega(t)$ = distance between shadow and lamp post at time t.

Find
$$\frac{dw}{dt}$$
 when $x=5m \notin y=6m$.

Using similar triangles:

$$\frac{w-x}{y} = \frac{w}{10} \Rightarrow 10w - 10x = yw \Rightarrow w = \frac{10x}{10-y}$$

$$\frac{d\omega}{dt} = \frac{(10-y)(10\frac{dx}{dx}) - (10x)(-\frac{dy}{dx})}{(10-y)^2}$$

When
$$x = 5$$
, $y = 6$: $\frac{der}{dx} = \frac{(10-6)(10 \cdot \frac{1}{2}) - (10 \cdot 5)(-1)}{(10-6)^2} = \frac{35}{8} = \frac{m}{5}$

.. Shadow is moving along the ground at 35 m.