Question 1: After a long day of doing math in the summer you decide to sit down outside and enjoy a cold drink. Your beverage had an initial temperature of 4°C when removed from the refrigerator, and within 15 minutes you observe that the temperature of the drink has reached 10°C. The outside temperature is 30°C.

Recall that Newton's Law of Cooling (and Heating) states that the temperature u(t) of an object at time t is

$$u(t) = T + (u_0 - T)e^{kt}$$

where T is the ambient (surrounding) temperature, u_0 is the initial temperature of the object, and k is a constant.

(a) [7 points] Use the information above to determine the temperature of the beverage 27 minutes after it has been removed from the refrigerator. (Round your final answer to the nearest degree.)

$$T = 30^{\circ}$$
 $U_{\circ} = 4^{\circ}$
 $U(15) = 10^{\circ}$

$$10 = 30 + (4-30)e^{15-k}$$

$$15-k = \frac{10-30}{4-30} = \frac{-20}{-26} = \frac{10}{13}$$

:.
$$A = \frac{1}{15} \ln \left(\frac{10}{13} \right)$$

:.
$$U(27) = 30 + (4-30) e^{\frac{1}{15} \ln(\frac{10}{13}) \cdot 27}$$

$$\approx [14°C]$$

(b)[3 points] How long will it take for the beverage to reach a temperature of 25°C? (Round to nearest minute.)

Solve
$$25 = 30 + (4-30)e^{-1}$$
 for t

$$e^{-1} = \frac{25-30}{4-30} = \frac{-5}{-26} = \frac{5}{26}$$

$$\therefore kt = \ln(\frac{5}{26})$$

$$\therefore t = \frac{\ln(\frac{5}{26})}{\ln(\frac{10}{13})} = \frac{\ln(\frac{5}{26})}{\ln(\frac{10}{13})} \approx 94 \text{ min.}$$

Question 2:

(a)[2 points] Convert $-17\pi/6$ to degrees.

$$\left(\frac{-17\pi}{6}\right)\left(\frac{180}{\pi}\right) = \boxed{-510^{\circ}}$$

(b)[4 points] A bicycle wheel has a radius of 0.35 m and rotates at 5 revolutions per second. What is the speed of the bicycle? (Round to one decimal and state units.)

$$\omega = 5$$
 vev. per second
= $(5)(2\pi)$ vadians per second

∴ speed of bicycle = linear speed of point on wheel

=
$$ωv$$

= $(5)(2π)(0.35)$

≈ $11.0 \frac{m}{5}$

(c)[4 points] Find the exact value of $\cos\left(\frac{5\pi}{3}\right) + \sin\left(\frac{2\pi}{3}\right)$.

$$\cos\left(\frac{5\pi}{3}\right) + \sin\left(\frac{2\pi}{3}\right)$$

$$= \frac{1}{2} + \frac{\sqrt{3}}{2}$$

$$= \frac{1+\sqrt{3}}{2}$$

Question 3:

(a)[4 points] If $\csc \theta = 5$ and $\cos \theta < 0$, determine the value of $\tan \theta$.

$$u^{2} + (\frac{1}{5})^{2} = 1$$

$$\therefore u = \sqrt{1 - \frac{1}{25}}$$

$$= -\frac{2\sqrt{6}}{5}$$

$$\frac{1}{\cos 0} = \frac{\sin 0}{\cos 0}$$

$$= \frac{\left(\frac{1}{5}\right)}{-\frac{2\sqrt{6}}{5}}$$

$$= \frac{-1}{2\sqrt{6}} \text{ or } \frac{-\sqrt{6}}{12}$$

(b)[3 points] Determine the two angles θ such that $0 \le \theta < 2\pi$ and $\cos \theta = \sqrt{3}/2$.

$$O = \frac{\pi}{6}, \quad O = \frac{11\pi}{6}$$

(c) [3 points] If
$$\sin\left(\frac{7\pi}{12}\right) = a$$
, determine $\sin\left(-\frac{31\pi}{12}\right)$.

$$5in\left(-\frac{31\pi}{12}\right) = -5in\left(\frac{31\pi}{12}\right)$$

$$= -5in\left(\frac{24\pi}{12} + \frac{7\pi}{12}\right)$$

$$= -5in\left(\frac{2\pi}{12}\right)$$

$$= -5in\left(\frac{7\pi}{12}\right)$$

$$= -5in\left(\frac{7\pi}{12}\right)$$

Question 4:

(a)[3 points] Determine
$$\sin\left(\frac{1003\pi}{2}\right)$$

 $5in\left(\frac{1003\pi}{2}\right) = 5in\left(\frac{1000\pi}{2} + \frac{3\pi}{2}\right)$

 α . Sin $Q = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$

=
$$5 i \ln \left((250)(2\pi) + \frac{3\pi}{2} \right)$$

$$= \sin\left(\frac{3\pi}{2}\right)$$

(b)[3 points] If θ is in the first quadrant and $\cos\left(\theta - \frac{\pi}{2}\right) = \frac{1}{2}$, determine $\sin\theta$.

O-
$$\frac{\pi}{2}$$
 must be in quadrant \overline{M} ;
Since $\cos(0-\frac{\pi}{2})=\frac{1}{2}$, $0-\frac{\pi}{2}=-\frac{\pi}{3}$
 $0 = \frac{\pi}{3} + \frac{\pi}{2} = \frac{-2\pi + 3\pi}{6} = \frac{\pi}{6}$

(c) [4 points] Use the information in the unit circle below to determine $\cos \theta$:

$$(3a)^{2} + (4a)^{2} = 1$$

$$9a^{2} + 16a^{2} = 1$$

$$25a^{2} = 1$$

$$a = \sqrt{25} = \frac{1}{5}$$

$$c_{0} \cos \phi = 3a = \frac{3}{5}$$

Question 5:

- (a) [7 points] Carefully sketch the graph of $y = -3\cos\left(4x + \frac{\pi}{2}\right) + 1 = -3\cos\left(4x + \frac{\pi}{2}\right) + 1$
- $0 y = \cos(x)$

@ y=-3cos(x)

3 y= -3 cos (4x)

 $9 \quad y = -3\cos\left[4\left(x + \frac{\pi}{8}\right)\right]$

(5) y=-3cos[4(x+=)]+1

(b)[3 points] State the period, amplitude and phase-shift of the function in (a).