Question 1 [10 points]:
(a) [5] The one to one function $f(x)=\sqrt{\frac{2 x-1}{5}}+3$ has domain $[1 / 2, \infty)$ and range $[3, \infty)$. Determine $f^{-1}(x)$ and state its domain and range.
(b) [3] Express as a single logarithm: $\log _{2} x+3 \log _{2}\left(x^{2}+1\right)-\log _{2} 5$
(c) [2] Calculate $\log _{\sqrt{2}} 7$ (round your answer to two decimal places).

Question 2 [10 points]: Solve the following equations for x :
(a) $[5] \quad 2^{3 x^{2}}=4 \cdot 2^{5 x}$
(b) [5] $\quad \ln (x)=\ln (35)-\ln (x-2)$

Question 3 [10 points]:
(a) [5] The half-life of iodine-131 is eight days. A sample originally containing 10 g of iodine-131 now contains only 0.3 g . How old is it? Round your answer to two decimal places. (Recall that the amount A of radioactive material present at time t is given by $A(t)=A_{0} e^{k t}$ where A_{0} is the original amount of radioactive material and k is a negative number.)
(b) [5] The population of one country grows according to the model $P_{1}(t)=12,000 e^{0.02 t}$, while that of a second country grows according to the model $P_{2}(t)=4000 e^{0.025 t}$. Here t represents time in years. If $t=0$ corresponds to the present, in how many years time will the two populations be equal?

Question 4 [10 points]:
(a) [1] Convert -330° to radians.
(b) $[2]$ Determine the exact value of $\cos \left(\frac{49 \pi}{6}\right)$.
(c) [3] Determine the exact value of $\cos \left(\frac{7 \pi}{4}\right) \csc \left(\frac{7 \pi}{3}\right)$.
(d) [4] Suppose $\sin \theta=2 / 5$ where $\frac{\pi}{2}<\theta<\pi$. Determine $\tan \theta$.

Question 5 [10 points]:
(a) [7] Carefully sketch the graph of $y=2 \sin (3 x-\pi)-2$.
(b) [3] State the period, amplitude and phase-shift of the function sketched in part (a).

Question 6 [$\mathbf{1 0}$ points]: Find all solutions in the interval $[0,2 \pi)$:
(a) [5] $\sin (2 \theta) \sin (\theta)=\cos (\theta)$
(b) $[5] \quad 4(1+\sin (\theta))=\cos ^{2}(\theta)$

Question 7 [10 points]:
(a) [5] Solve for all missing sides and angles in the following triangle. Round final answers to one decimal place.

(b) [5] A triangle has angle $A=30^{\circ}$, side $c=5$ and side $a=3$. Determine the two possible values for angle C.

Question 8 [10 points]:
(a) [5] An observer on the ground is looking up at a 2 m tall statue mounted atop a building. The angle of elevation to the bottom of the statue is 50°, while that to the top of the statue is 53°. How tall is the building? Round your final answer to one decimal place.
(b) [5] Two people leave from the same point: one walks north at $5 \mathrm{~km} / \mathrm{h}$, the other walks at $4 \mathrm{~km} / \mathrm{h}$ at a bearing of $S 30^{\circ} \mathrm{E}$. What is the distance between the two people three hours later? Again, round your final answer to one decimal place.

Question 9 [$\mathbf{1 0}$ points]: For this question use

$$
\begin{gathered}
\mathbf{A}=\left[\begin{array}{ll}
2 & 1 \\
3 & 2
\end{array}\right], \mathbf{B}=\left[\begin{array}{rr}
1 & -1 \\
3 & 0
\end{array}\right], \mathbf{C}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \\
\mathbf{D}=\left[\begin{array}{rrr}
-1 & 2 & 3 \\
4 & 0 & 5
\end{array}\right], \mathbf{E}=\left[\begin{array}{rr}
2 & 1 \\
8 & -1 \\
6 & 5
\end{array}\right], \mathbf{F}=\left[\begin{array}{rr}
5 & -1 \\
-4 & 0 \\
2 & 3
\end{array}\right] .
\end{gathered}
$$

(a) [2] Compute $2 A-5 C$.
(b) [4] Compute $D(F-E)$.
(c) $[4]$ Compute A^{-1}.

Question 10 [$\mathbf{1 0}$ points]: Solve the following system of equations using matrix reduction (no credit will be given for using any other method):

$$
\begin{aligned}
x+y+z & =1 \\
-2 x+y+z & =-2 \\
3 x+6 y+6 z & =5
\end{aligned}
$$

Question 11 [10 points]:
(a) [3] Find a_{20} in the arithmetic sequence $5,9 / 2,4,7 / 2, \ldots$.
(b) [3] If $a_{5}=2 / 3$ and $a_{7}=10 / 3$ in a geometric sequence, what must be the common ratio r if it is a positive number?
(c) [4] The arithmetic series $2+\cdots+18=500$. How many terms are in the series?

Question 12 [$\mathbf{1 0}$ points]: A person would like to accumulate $\$ 1,000,000$ by his $60^{\text {th }}$ birthday so he can retire early. The plan is to make equal deposits into a fund on each birthday beginning with the $20^{\text {th }}$ and ending with the final payment made on the $60^{\text {th }}$. If all deposits are invested in a fund paying 5% interest compounded annually, how large must the equal annual deposits be in order to achieve the $\$ 1,000,000$ goal? Recall that P dollars invested at $i \%$ interest compounded annually accumulates to an amount $A=P\left(1+\frac{i}{100}\right)^{n}$ by the end of n years.

