Math 152 Sec S08N01 - Final Exam
Apr 212008
Question 1:
(a)[2 points] Convert -405° to radians.
(b) $[4$ points $]$ Find the exact value of $\sec (10 \pi / 3) \sin (-3 \pi / 4)$.
(c)[4 points] If $\cos (t)=-1 / 5$, find all possible values of $\sin (t)$.

Math 152 Sec S08N01 - Final Exam
Apr 212008
Question 2:
(a)[3 points] Find all angles $0 \leq \theta<2 \pi$ such that $\sin \theta=\sqrt{3} / 2$.
(b) [3 points] Find the exact value of $\sin (11 \pi / 12)$ (note: $2 / 3+1 / 4=11 / 12)$.
(c) [4 points] Simplify to an expression which does not contain trigonometric functions:
$\sin (\arccos (x / 2))$

Question 3:

(a)[4 points] Solve for x (round final answer to one decimal):

(b)[4 points] Find all remaining sides and angles in the following figure (round final answers to one decimal):

c
(c)[2 points] Find the exact value of $\log _{\frac{1}{2}} 16$

Question 4:

(a)[2 points] Find the x intercept of the graph of $y=\log _{7}(2 x-3)-2$.
(b) [2 points] Simplify:

$$
\ln \left(\frac{1}{4} e^{3 x}\right)-\ln \left(e^{2 x}\right)+\ln 4
$$

(c) $[\mathbf{3}$ points $]$ Let $\mathbf{A}=\left[\begin{array}{rr}2 & -1 \\ 0 & 2\end{array}\right], \mathbf{B}=\left[\begin{array}{rr}3 & -5 \\ -9 & 2\end{array}\right]$, and $\mathbf{C}=\left[\begin{array}{rr}-2 & 2 \\ 4 & -1\end{array}\right]$. Compute $(\mathbf{B}-2 \mathbf{C}) \mathbf{A}^{\mathrm{T}}$.
(d) $[\mathbf{3}$ points $]$ Let $\mathbf{A}=\left[\begin{array}{rr}1 & 2 \\ 0 & -1\end{array}\right]$. Find \mathbf{A}^{-1}.

Math 152 Sec S08N01 - Final Exam
Apr 212008
Question 5:
(a)[3 points] Find the $11^{\text {th }}$ term of the arithmetic sequence $\frac{7}{6}, \frac{5}{6}, \ldots$
(b) [3 points] A geometric sequence has $a_{3}=1 / 2$ and $a_{8}=-512$. What is a_{6} ?
(c)[4 points] An arithmetic series has first term 7, last term -47 and common difference between terms of $d=-3$. Find the sum of the series.

Question 6:

(a)[7 points] Carefully sketch the graph of $f(x)=\frac{1}{2} \sin \left(2 x-\frac{\pi}{2}\right)-\frac{1}{2}$ showing at least one complete cycle of the function. Label and indicate the scale on your axes.
(b)[3 points] State the amplitude, period and phase-shift of the function graphed in (a).

Question 7: A rocket traveling at 250 metres per second is climbing at an angle of 20° as shown in the figure below. A radar station at point C located 2000 metres from the launch point A is tracking the rocket.

(a)[3 points] What is the distance from the launch point A to the rocket at R three seconds after the rocket passes through point B ? (round your answer to the nearest metre.)
(b)[4 points] How far is the rocket at R from the radar station C at this same instant? (round your answer to the nearest metre.)
(c)[3 points] How high above the ground is the rocket at this same instant? (round your answer to the nearest metre.)

Math 152 Sec S08N01 - Final Exam
Apr 212008
Question 8: One population has size $P_{1}(t)$ at time t years given by $P_{1}(t)=1000 e^{0.05 t}$. A second population has size $P_{2}(t)$ at time t years given by $P_{2}(t)=800 e^{0.08 t}$.
(a)[3 points] What is the doubling time of the first population? (round your answer to one decimal.)
(b)[3 points] How many years does it take the second population to reach 2500 in size? (round your answer to one decimal.)
(c)[4 points] At what time t will both populations be equal in size? (round your answer to one decimal.)

Math 152 Sec S08N01 - Final Exam
Apr 212008
Question 9:
(a)[5 points] Solve for x :

$$
\log _{10}(3 x)-\log _{10}(x+1)=\log _{10} x
$$

(b)[5 points] Find all solutions $0 \leq t<2 \pi$ to

$$
2 \sin ^{2}(t)+\sin (t)-1=0
$$

Math 152 Sec S08N01 - Final Exam
Apr 212008
Question 10 [10 points]: Solve the following system of equations using matrix reduction (no credit will be given for using any other method):

$$
\begin{aligned}
5 x-10 y+5 z & =-15 \\
-5 x+8 y-7 z & =-5 \\
10 x-18 y+13 z & =-3
\end{aligned}
$$

