Question 1: Find the derivatives of the following functions (you do not have to simplify your answers):
(a) [3 points] $f(x)=-2 x^{5}+5 \pi^{2}-\frac{1}{x^{2}}$
(b) [3 points] $y=\sqrt{\frac{1}{t^{2}-7}}$
(c)[4 points] $g(x)=3 x-5 \cos ^{2}(\pi x)$

Question 2: Again, with these questions you do not have to simplify your answers:
(a)[3 points] Find $f^{\prime}(x)$ if $f(x)=\frac{\sqrt{x+1}}{x^{2}+1}$.
(b) $[3$ points $]$ Find y^{\prime} if $y=\cos \left(\sin \left(x^{2}+x\right)\right)$
(c)[4 points] y is defined implicitly as a function of x by the equation $x \sin y=y \cos x$. Find $\frac{d y}{d x}$.

Question 3:

(a) $[3$ points $]$ Compute $\int \frac{\sqrt{x}}{2}-3 \sin x d x$.
(b) [3 points] A bug walking along the x-axis has position given as a function of time $x(t)=$ $2 t^{3}-15 t^{2}+24 t$, where t is in seconds. What is the acceleration of the bug at time $t=2$ seconds?
(c)[4 points] Solve the differential equation $y^{\prime}=t^{3 / 2}-t-1$ where $y=0$ when $t=0$.

Question 4:

(a)[5 points] Find the equation of the tangent line to the curve $y=\frac{1+\sin x}{1-\sin x}$ at the point where $x=\pi$.
(b)[5 points] There are two points on the curve $y=x^{2}+x$ at which the tangent lines to the curve also pass through (1,0). Find the x coordinates of these points.

Question 5:

(a) [7 points] Let $f(x)=(1+x) \sin (x)$. Use a tangent line approximation to estimate $f(0.1)$. Round your answer to 2 decimal places.
(b)[3 points] Is your estimate in part (a) an over-estimate or under-estimate? Explain using calculus.

Question 6: [10 points]

Sand is falling onto a pile at a rate of $1 \mathrm{~m}^{3}$ per minute. The pile of sand maintains the shape of a cone with height equal to half the diameter of the base. How fast is the height of the sand pile increasing when the height is exactly 3 m ? Give units in your answer.

Question 7: [10 points]
Find the area of the largest rectangle that can be inscribed in a semicircle of radius R if one side of the rectangle lies along the diameter of the semicircle.

Question 8: [10 points]

A cylindrical container open at the top is to be made with $300 \pi \mathrm{~m}^{2}$ of material. Find the radius and height which produce the container of greatest volume. Be sure to justify that your answer does indeed give the maximum.

Question 9:

(a)[5 points] You are using Newton's Method to locate a root of the equation $f(x)=0$, and you make an initial guess of $x_{1}=2$ for the root. The tangent line to the curve $y=f(x)$ at $x=2$ has equation $3 y=10 x-19$. What will be the next approximation x_{2} obtained using Newton's Method?
(b)[5 points] The equation $x^{2}=\frac{1}{\sin x}$ has one solution for $0<x<2$. Find x_{2}, the second approximation for the root obtained using Newton's Method. Round your answer to three decimal places.

Question 10: Consider the function $f(x)=\frac{x^{3}}{1+x}$.
(a)[2 points] Find the vertical asymptotes as well as the x and y intercepts of the graph of $y=$ $f(x)$.
(b) [3 points] Find the intervals of increase and decrease of $f(x)$. State the x coordinate of any relative extrema.
(c) [3 points] Find the intervals on which $f(x)$ is concave up, and the intervals on which $f(x)$ is concave down. State the x coordinate of any inflection points.
(d) [2 points] Use your results from (a), (b) and (c) to sketch the graph of $y=f(x)$.

