Question 1:

(a) The following is the graph of y = s(t), the displacement of a particle in metres at time t seconds.

- (i)[2 points] Estimate the velocity at t = 2 seconds. State units.
- (ii)[2 points] When is the particle at rest?
- (iii)[2 points] At what time did the velocity change from decreasing to increasing?
- (b)[4 points] The equation of motion of a particle is $s(t) = 2t^3 3t^2 + 7$ where s is in metres and t in seconds. Determine the time at which acceleration is zero.

Question 2:

(a)[3 points] Differentiate:
$$y = \frac{\cos(x)}{1+x^2}$$

(b)[3 points] Differentiate:
$$f(t) = 2\sqrt{t} \sec(t)$$

(c)[4 points] Find
$$\frac{dy}{dx}$$
: $y = \frac{4x^2e^x}{x^2 + \pi^2}$

Question 3:

(a)[3 points] Compute g'(1): $g(r) = 3e^r \sqrt[3]{8r}$

(b)[3 points] Differentiate: $y = \left(x + \frac{1}{x^2}\right)^{-5}$

(c)[4 points] Differentiate: $q(t) = \sin(t \csc(t))$

Question 4:

(a)[3 points] Find
$$\frac{dy}{dz}$$
: $y = \sqrt{\tan(\sqrt{z})}$

(b)[3 points] Find
$$y'$$
: $y = e^{x^7 \cos x}$

(b)[4 points] Compute
$$f''(0)$$
: $f(x) = x^2 e^{x^3}$

Question 5:

(a)[5 points] Evaluate the limit $\lim_{x \to \infty} \frac{2e^{5x} - e^x - 1}{3e^{5x} + 5e^{3x}}$

(b)[5 points] Find the equation of the tangent line to the curve $x^3 + y^3 = 4xy + 1$ at the point (2,1).