The following problems are good practice for the upcoming test. Some are challenging, but completely within the scope of the material we have covered. Round any final calculator answers to 1 decimal.

- 1. Express $-\frac{5}{2}\cos(2(x-\pi/4)) \frac{5}{2}$ as a sine function. (a trig identity may help here).
- 2. The maximum value of $y = \pi^2 \sin(\pi x + 1) + 1$ is $y = \pi^2 + 1$. What is the smallest positive value of x where this maximum occurs?
- 3. Carefully graph $y = \frac{1}{3}\sin(3x + \pi/2) + \frac{2}{3}$. Be sure to show the x and y axes with labels, as well as the scale on both axes.
- 4. What is the period of $y = 6 \sin(2t) \cos(2t)$?
- 5. The function $y = \left[\sqrt{3}\left(\sin t + \cos t\right)\right]^2$ can be written as a single transformed sine function. Find the period, phase-shift, amplitude and vertical displacement of this function.
- 6. Compute exactly:
 - (i) $\csc(-77\pi/4)$
 - (ii) $\sec(13\pi/6 + \pi)$
 - (iii) $\cot(1035\pi/6)\tan(1035\pi/6)$
- 7. Compute exactly, making use of trig identities if necessary:
 - (i) $\sec(-\pi/12)$ (hint: 1/4 1/6 = 1/12)
 - (ii) $\cos^2(-\pi/8)$
 - (iii) $(\sin (\pi/7) + \cos (\pi/7))^2 \sin (2\pi/7)$
- 8. Suppose $\cos(\alpha + \pi) = 1/2$. What is $\cos(\alpha)$?
- 9. Suppose $\sin(\alpha + \pi/6) = 7/8$ and $\cos \alpha = 1/3$. What is $\sin \alpha$?
- 10. A right triangle has angle α with sec $\alpha = 3/2$ and hypotenuse of length 6. How long is the side opposite α ?
- 11. A right triangle has angles 90°, α and β , with $\csc \alpha = 5/4$; what then is $\tan \beta$?
- 12. Find the length of the side a in the following figure:

- 13. A test rocket traveling at 900 km/hr is climbing at an angle of 20° as shown in the figure below. A radar station at point R located 2 km from the launch point A is tracking the rocket.
 - (i) How far away is the rocket from the radar station 3 seconds after the rocket passes through point B directly overhead?
 - (ii) How far is the rocket from the launch point at this same instant?
 - (iii) How high above the ground is the rocket at this same instant?

14. A person of height 2 m casts a shadow of length 5 m while standing a certain distance from a light atop a 6 m tall lamppost. How far from the lamppost is the person? (If you think about it you can do this without trig.)

15. Two observers located 5 km apart see a UFO between them in the sky. One observer measures the angle of elevation to the UFO to be 23°, while the other measures it to be 31°. How far is the UFO from each observer, and how far is it above the ground?