The following problems are good practice for the upcoming test. Some are challenging, but completely within the scope of the material we have covered. Round any final calculator answers to 1 decimal.

1. Express $-\frac{5}{2} \cos (2(x-\pi / 4))-\frac{5}{2}$ as a sine function. (a trig identity may help here).
2. The maximum value of $y=\pi^{2} \sin (\pi x+1)+1$ is $y=\pi^{2}+1$. What is the smallest positive value of x where this maximum occurs?
3. Carefully graph $y=\frac{1}{3} \sin (3 x+\pi / 2)+\frac{2}{3}$. Be sure to show the x and y axes with labels, as well as the scale on both axes.
4. What is the period of $y=6 \sin (2 t) \cos (2 t)$?
5. The function $y=[\sqrt{3}(\sin t+\cos t)]^{2}$ can be written as a single transformed sine function. Find the period, phase-shift, amplitude and vertical displacement of this function.
6. Compute exactly:
(i) $\csc (-77 \pi / 4)$
(ii) $\sec (13 \pi / 6+\pi)$
(iii) $\cot (1035 \pi / 6) \tan (1035 \pi / 6)$
7. Compute exactly, making use of trig identities if necessary:
(i) $\sec (-\pi / 12)($ hint: $1 / 4-1 / 6=1 / 12)$
(ii) $\cos ^{2}(-\pi / 8)$
(iii) $(\sin (\pi / 7)+\cos (\pi / 7))^{2}-\sin (2 \pi / 7)$
8. Suppose $\cos (\alpha+\pi)=1 / 2$. What is $\cos (\alpha)$?
9. Suppose $\sin (\alpha+\pi / 6)=7 / 8$ and $\cos \alpha=1 / 3$. What is $\sin \alpha$?
10. A right triangle has angle α with $\sec \alpha=3 / 2$ and hypotenuse of length 6 . How long is the side opposite α ?
11. A right triangle has angles $90^{\circ}, \alpha$ and β, with $\csc \alpha=5 / 4$; what then is $\tan \beta$?
12. Find the length of the side a in the following figure:

13. A test rocket traveling at $900 \mathrm{~km} / \mathrm{hr}$ is climbing at an angle of 20° as shown in the figure below. A radar station at point R located 2 km from the launch point A is tracking the rocket.
(i) How far away is the rocket from the radar station 3 seconds after the rocket passes through point B directly overhead?
(ii) How far is the rocket from the launch point at this same instant?
(iii) How high above the ground is the rocket at this same instant?

14. A person of height 2 m casts a shadow of length 5 m while standing a certain distance from a light atop a 6 m tall lamppost. How far from the lamppost is the person? (If you think about it you can do this without trig.)

15. Two observers located 5 km apart see a UFO between them in the sky. One observer measures the angle of elevation to the UFO to be 23°, while the other measures it to be 31°. How far is the UFO from each observer, and how far is it above the ground?
