Question 1:

(a)[7 points] Carefully sketch the graph of $y=-\sin \left(2 x+\frac{\pi}{2}\right)+\frac{1}{2}$ for x in the interval $[-\pi, \pi]$. (You may show more of the graph if you wish). Clearly show the x and y axes, and indicate the scale on the axes.
(b) [3 points] State the period, amplitude and phase shift of the function in part (a).

Math 152 Sec S0601 - Test 2

Mar 32006
Question 2: [10 points] Compute exactly (without a calculator). Show work to support your answer.
(a) $[2$ points]

$$
\sec \left(\frac{\pi}{6}\right)
$$

(b) [4 points]

$$
\frac{\cot (\alpha)}{\cos (\alpha)}-\frac{1}{\sin (\alpha)}
$$

(c) $[4$ points $]$

$$
\cot \left(\frac{17 \pi}{4}\right) \sec \left(\frac{\pi}{4}\right)
$$

Math 152 Sec S0601 - Test 2

Mar 32006

Question 3:

In the triangle above, determine the lengths of sides A, B and C in terms of the measurement h.

Question 4:

A person at point A wishes to hike to the summit S of the mountain along the path as shown. The mountain has an elevation of 1 km , and the hiker is 5 km from the base B of mountain. The hiker measures the angle of elevation to the top of the mountain to be 10°. Find the total length of the hike from point A to the summit S. (Give your answer in kilometres, rounded to one decimal place.) You may find it useful to determine x first.

Math 152 Sec S0601 - Test 2

Mar 32006

Question 5:

(a)[5 points] Use identities to simplify

$$
\sqrt{2} \cos \left(\alpha+\frac{\pi}{4}\right)+\sin \alpha
$$

(b)[5 points] Use identities to find an exact value for $\sin \left(15^{\circ}\right)$.

You may find some of the following formulas useful:

$$
\begin{aligned}
& \frac{\sin (A)}{a}=\frac{\sin (B)}{b}=\frac{\sin (C)}{c} \\
& c^{2}=a^{2}+b^{2}-2 a b \cos (C) \\
& \sin (A+B)=\sin (A) \cos (B)+\cos (A) \sin (B) \\
& \sin (A-B)=\sin (A) \cos (B)-\cos (A) \sin (B) \\
& \cos (A+B)=\cos (A) \cos (B)-\sin (A) \sin (B) \\
& \cos (A-B)=\cos (A) \cos (B)+\sin (A) \sin (B) \\
& \sin ^{2}(A)+\cos ^{2}(A)=1 \\
& \sin ^{2}(2 A)=2 \sin ^{(A) \cos (A)} \\
& \cos ^{(2 A)}=\cos ^{2}(A)-\sin ^{2}(A) \\
& \sin ^{2}(A)=\frac{1-\cos (2 A)}{2} \\
& \cos ^{2}(A)=\frac{1+\cos (2 A)}{2}
\end{aligned}
$$

