# MALASPINA www.mala.ca

## Math 152 Sec S07N01 Test 2 – Mar 8 2007

name (printed)

student number

I have read and understood the instructions below:

signature

#### Instructions:

- 1. No notes or books are to be used in this test. If you need scrap paper please ask and some will be provided. Refer to the last page for a list of formulas.
- 2. A non-programmable, non-graphing calculator is permitted.
- 3. There are 7 pages (including this cover page) in the test. Justify every answer, and clearly show your work. Unsupported answers will receive no credit.
- 4. You will be given 50 minutes to write this test. Read over the test before you begin.
- 5. At the end of the test you will be given the instruction "Put away all writing implements and remain seated." *Continuing to write after this instruction will be considered as cheating.*
- 6. Academic dishonesty: Exposing your paper to another student, copying material from another student, or representing your work as that of another student constitutes academic dishonesty. Cases of academic dishonesty may lead to a zero grade in the test, a zero grade in the course, and other measures, such as suspension from this university.

| Question | value | score |
|----------|-------|-------|
| 1        | 10    |       |
| 2        | 10    |       |
| 3        | 10    |       |
| 4        | 10    |       |
| 5        | 10    |       |
| Total    | 50    |       |

### Question 1:

(a)[3 points] Convert  $-2\pi/5$  radians to degrees.

(b)[3 points] A right triangle has acute angles  $\alpha$  and  $\beta$ . If  $\tan \alpha = \frac{3}{4}$ , what is  $\csc \beta$ .

(c)[4 points] Referring to the unit circle below, find the exact numerical value of  $\tan(\theta + \pi)$ .



#### Question 2

(a)[7 points] Neatly sketch the graph of  $y = 1 + 2\sin(4x + \pi)$ , showing at least two complete cycles of the function.

(b)[3 points] State the period, amplitude and phase shift of the function in part (a).

#### Question 3

(a)[2 points] Find the exact value of  $\sec\left(\frac{17\pi}{4}\right)$ .

(b)[3 points] Express  $\sin(\tan^{-1}(x/3))$  in terms of x (without trig functions).

(c)[3 points] Use trigonometric identities to find the exact value of  $\cos\left(\frac{5\pi}{12}\right)$ . (Hint:  $\frac{1}{6} + \frac{1}{4} = \frac{5}{12}$ .)

(d)[2 points] Use (c) to find  $\cos\left(\frac{5\pi}{24}\right)$ .

### Question 4 [10 points]

An observer standing at the top of a tower is looking down at a nearby tree. The tower and tree are on level ground, and the observer's eyes are 20 m above the ground. The observer's line of sight to the top of the tree has an angle of depression of 40°, while the line of sight to the base of the tree has an angle of depression of 55°. How tall is the tree?

### Question 5

(a)[5 points] Simplify

 $(\sin x + \cos x)^2 - \sin (2x)$ 

(b)[5 points] Find all solution in  $[0, 2\pi)$  of

 $3\cos x - 2\cos^2 x = 1$ 

You may find some of the following formulas useful:

$$\sin^{2}(A) + \cos^{2}(A) = 1$$
  

$$\sin(A + B) = \sin(A)\cos(B) + \cos(A)\sin(B)$$
  

$$\sin(A - B) = \sin(A)\cos(B) - \cos(A)\sin(B)$$
  

$$\cos(A + B) = \cos(A)\cos(B) - \sin(A)\sin(B)$$
  

$$\cos(A - B) = \cos(A)\cos(B) + \sin(A)\sin(B)$$
  

$$\sin(2A) = 2\sin(A)\cos(A)$$
  

$$\cos(2A) = \cos^{2}(A) - \sin^{2}(A)$$
  

$$\cos(2A) = 1 - 2\sin^{2}(A)$$
  

$$\cos(2A) = 2\cos^{2}(A) - 1$$
  

$$\sin(A/2) = \pm \sqrt{\frac{1 - \cos(A)}{2}}$$
  

$$\cos(A/2) = \pm \sqrt{\frac{1 + \cos(2A)}{2}}$$