The following problems are good practice for the upcoming test．Some are challenging，but com－ pletely within the scope of the material we have covered．Round any final calculator answers to 1 decimal．

1．Compute exactly
（i） $\sin ^{-1}(\sin (5 \pi / 6))$
（ii） $\sin \left(\sin ^{-1}(5 / 6)\right)$
（iii） $\tan \left(\sin ^{-1}(-2 / 3)\right)$

$$
\underline{q} \wedge / z^{-} \text {: sue }
$$

（iv） $\sin ^{-1}\left(\cos \left(\sin ^{-1}(1 / 2)\right)\right)$

$$
8 / \nu \text { :sue }
$$

2．Simplify $\sin \left(\tan ^{-1}(a / b)\right)$ ，giving your answer in terms of a and b ．

$$
z^{z q+z^{n}} / / p \text { :sur }
$$

3．Recall that $\cos (2 A)=\cos ^{2}(A)-\sin ^{2}(A)$ for any angle A ．Using this，simplify $\cos \left(2 \sin ^{-1}(x)\right)$ where $-1 \leq x \leq 1$ ．

4．Expand $(2 t+3 / t)^{5}$ using the binomial theorem．

5．Simplify $\binom{5}{2}-\binom{4}{2}-\binom{4}{1}$ ．

6．Find the term of $\left(\frac{3 x^{2}}{2}-\frac{1}{3 x}\right)^{12}$ that does not contain x ．
モモI／gc ：sue
7．An arithmetic sequence has $a_{17}=-40$ and $a_{28}=-73$ ．Find a_{1} ．
8．An arithmetic sequence has $a_{11}-a_{8}=12$ while $a_{15}=20$ ．Find a_{16} ．

9．Find the tenth term of the geometric sequence $7 / 2,-7 / 4,7 / 8, \ldots$

$$
\mp Z 0 \mathrm{I} / \mathrm{L}-\text { : sut }
$$

10．A geometric sequence has $a_{4}=5 \pi$ and $a_{6}=\pi / 5$ ．Find a_{1} ．
11. Find the sum of the arithmetic series $-1+4+9+\cdots+54$.
12. Find the sum of the first six terms of the geometric series $-1+1 / 4-1 / 16+\cdots$.

モZ01/6I8- :sue
13. At the beginning of each year you deposit $\$ P$ into an investment which pays 8% compounded annually. The investment is worth $\$ 40,000$ at the end of ten years. How much were the annual payments P ?

