5 Inverse Matrices

5.1 Introduction

In our earlier work on matrix multiplication, we saw the idea of the inverse of a matrix. That is, for a square matrix \mathbf{A}, there may exist a matrix \mathbf{B} with the property that $\mathbf{A B}=\mathbf{B A}=\mathbf{I}$.

This is a useful concept, and gives us yet another method for solving systems of equations. To illustrate, consider the simple system

$$
\begin{aligned}
2 x-5 y & =6 \\
x+3 y & =1
\end{aligned}
$$

Instead of writing this as an augmented matrix, write this as a matrix equation using a product:

$$
\left[\begin{array}{rr}
2 & -5 \\
1 & 3
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
6 \\
1
\end{array}\right]
$$

If we let $\mathbf{A}=\left[\begin{array}{rr}2 & -5 \\ 1 & 3\end{array}\right], \mathbf{X}=\left[\begin{array}{l}x \\ y\end{array}\right]$, and $\mathbf{C}=\left[\begin{array}{l}6 \\ 1\end{array}\right]$, then the equation we wish to solve is $\mathrm{AX}=\mathbf{C}$.
If we knew $\mathbf{A}^{\mathbf{- 1}}$, we could solve this easily for the unknown \mathbf{X} : (left) multiply both sides of the equation by \mathbf{A}^{-1} to find

$$
\begin{aligned}
\mathbf{A}^{-1}(\mathbf{A X}) & =\mathbf{A}^{-1} \mathbf{C} \\
\left(\mathbf{A}^{-1} \mathbf{A}\right) \mathbf{X} & =\mathbf{A}^{-1} \mathbf{C} \\
\mathbf{I X} & =\mathbf{A}^{-1} \mathbf{C} \\
\mathbf{X} & =\mathbf{A}^{-1} \mathbf{C}
\end{aligned}
$$

We see this is much like solving the simple equation $a x=c$ for the unknown x where a and c are real numbers.

In this section make precise the idea of a matrix inverse and develop a method to find the inverse of a given square matrix when it exists.

5.2 Definition

Suppose \mathbf{A} is a square matrix of order n. A matrix \mathbf{B} with the property that $\mathbf{B A}=\mathbf{I}$ is called an inverse of \mathbf{A}. If \mathbf{A} has an inverse, it is called invertible, and we write $\mathbf{A}^{-\mathbf{1}}$ to denote the inverse.

Some notes concerning this definition:

1. If \mathbf{A} is invertible, then $\mathbf{A A}^{\mathbf{- 1}}=\mathbf{A}^{\mathbf{- 1}} \mathbf{A}=\mathbf{I}$.
2. If a matrix \mathbf{A} has an inverse, then the inverse is unique, so we may speak of the inverse \mathbf{A}.
3. Not all square matrices have inverses.

5.3 Procedure for Finding the Inverse of a Matrix

Here we give a method for finding the inverse of a square matrix. We will see that this involves nothing more than row reduction that we have seen before. For the purposes of the explanation 2×2 matrices are used, but the method extends to square matrices of any size.

Suppose A is invertible, where

$$
\mathbf{A}=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]
$$

and we wish to find a matrix $\mathbf{B}=\left[\begin{array}{ll}b_{11} & b_{12} \\ b_{21} & b_{22}\end{array}\right]$ such that $\mathbf{A B}=\mathbf{I}$. That is, we want

$$
\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]\left[\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

This matrix multiplication may be expressed as two systems of equations:

$$
\begin{aligned}
& a_{11} b_{11}+a_{12} b_{21}=1 \\
& a_{21} b_{11}+a_{22} b_{21}=0
\end{aligned} \quad \text { and } \quad \begin{aligned}
& a_{11} b_{12}+a_{12} b_{22}=0 \\
& a_{21} b_{12}+a_{22} b_{22}=1
\end{aligned}
$$

If \mathbf{A} is invertible, then there are values of $b_{11}, b_{12}, b_{21}, b_{22}$ which solve this system. In augmented matrix form these two systems of equations become

$$
\left[\begin{array}{ll|l}
a_{11} & a_{12} & 1 \\
a_{21} & a_{22} & 0
\end{array}\right] \quad \text { and } \quad\left[\begin{array}{ll|l}
a_{11} & a_{12} & 0 \\
a_{21} & a_{22} & 1
\end{array}\right]
$$

Now, if \mathbf{A} is invertible, again meaning that these two systems have unique solutions, then after reduction by elementary row operations the result would be

$$
\left[\begin{array}{ll|l}
1 & 0 & b_{11} \\
0 & 1 & b_{21}
\end{array}\right] \quad \text { and } \quad\left[\begin{array}{ll|l}
1 & 0 & b_{12} \\
0 & 1 & b_{22}
\end{array}\right]
$$

Here's the key observation: the elementary row operations used to reduce \mathbf{A} are the same for both systems! Therefore, we can do both reductions simultaneously using an augmented matrix of the form

$$
\left[\begin{array}{ll|ll}
a_{11} & a_{12} & 1 & 0 \\
a_{21} & a_{22} & 0 & 1
\end{array}\right] \xrightarrow{\text { reduce }}\left[\begin{array}{ll|ll}
1 & 0 & b_{11} & b_{12} \\
0 & 1 & b_{21} & b_{22}
\end{array}\right]
$$

Notice what this says: if $\mathbf{A}^{-\mathbf{1}}$ exists, then \mathbf{A} reduces to \mathbf{I} and produces $\mathbf{A}^{\mathbf{- 1}}$ in the augmented matrix above. It also tells us something more: if A fails to reduce to I with this procedure, then $\mathbf{A}^{\mathbf{- 1}}$ does not exist. So this procedure not only gives the inverse when it exists, it also tells us with certainty when $\mathbf{A}^{\mathbf{1}}$ does not exist.

The procedure can be summarized very concisely: to find the inverse of the matrix \mathbf{A} :

$$
[\mathbf{A} \mid \mathbf{I}] \xrightarrow{\text { reduce }}\left[\mathbf{I} \mid \mathbf{A}^{-\mathbf{1}}\right] .
$$

If the original matrix \mathbf{A} does not reduce to \mathbf{I} in this procedure, then $\mathbf{A}^{\mathbf{- 1}}$ does not exist.

5.4 Examples

Example: Back to our problem from the beginning of this section: solve the system

$$
\begin{aligned}
2 x-5 y & =6 \\
x+3 y & =1
\end{aligned}
$$

using matrix inverses.
Solution: Letting $\mathbf{A}=\left[\begin{array}{rr}2 & -5 \\ 1 & 3\end{array}\right], \mathbf{X}=\left[\begin{array}{l}x \\ y\end{array}\right]$, and $\mathbf{C}=\left[\begin{array}{l}6 \\ 1\end{array}\right]$, we wish to solve

$$
\mathbf{A X}=\mathbf{C}
$$

To find $\mathbf{A}^{\mathbf{1}}$, first set up

$$
\left[\begin{array}{rr|rr}
2 & -5 & 1 & 0 \\
1 & 3 & 0 & 1
\end{array}\right]
$$

Now reduce:

$$
\begin{aligned}
& R_{1} \leftrightarrow R_{2}:\left[\begin{array}{rr|rr}
1 & 3 & 0 & 1 \\
2 & -5 & 1 & 0
\end{array}\right] \\
& (-2) R_{1}+R_{2}:\left[\begin{array}{rr|rr}
1 & 3 & 0 & 1 \\
0 & -11 & 1 & -2
\end{array}\right] \\
& (-1 / 11) R_{2}:\left[\begin{array}{rr|rrr}
1 & 3 & 0 & 1 \\
0 & 1 & -1 / 11 & 2 / 11
\end{array}\right] \\
& (-3) R_{2}+R_{1}:\left[\begin{array}{rr|rr}
1 & 0 & 3 / 11 & 5 / 11 \\
0 & 1 & -1 / 11 & 2 / 11
\end{array}\right]
\end{aligned}
$$

Therefore, $\mathbf{A}^{-\mathbf{1}}=\left[\begin{array}{rr}3 / 11 & 5 / 11 \\ -1 / 11 & 2 / 11\end{array}\right]$, and so

$$
\begin{aligned}
\mathbf{X} & =\mathbf{A}^{-\mathbf{1}} \mathbf{C} \\
& =\left[\begin{array}{rr}
3 / 11 & 5 / 11 \\
-1 / 11 & 2 / 11
\end{array}\right]\left[\begin{array}{l}
6 \\
1
\end{array}\right] \\
& =\left[\begin{array}{r}
23 / 11 \\
-4 / 11
\end{array}\right] .
\end{aligned}
$$

Example: Let

$$
\mathbf{A}=\left[\begin{array}{rrr}
1 & -2 & 1 \\
-2 & 3 & 1 \\
5 & -7 & -3
\end{array}\right]
$$

Find \mathbf{A}^{-1}.

Solution: Set up

$$
\left[\begin{array}{rrr|rrr}
1 & -2 & 1 & 1 & 0 & 0 \\
-2 & 3 & 1 & 0 & 1 & 0 \\
5 & -7 & -3 & 0 & 0 & 1
\end{array}\right]
$$

Now reduce:

$$
\begin{aligned}
&(2) R_{1}+R_{2} \\
&(-5) R_{1}+R_{3}:
\end{aligned}\left[\begin{array}{rrr|rrr}
1 & -2 & 1 & 1 & 0 & 0 \\
0 & -1 & 3 & 2 & 1 & 0 \\
0 & 3 & -8 & -5 & 0 & 1
\end{array}\right]
$$

Since \mathbf{A} reduced to \mathbf{I} in the left hand side of the augmented matrix, the right hand side is $\mathbf{A}^{\mathbf{- 1}}$:

$$
\mathbf{A}^{-\mathbf{1}}=\left[\begin{array}{rrr}
2 & 13 & 5 \\
1 & 8 & 3 \\
1 & 3 & 1
\end{array}\right]
$$

A check shows that indeed, $\mathbf{A A}^{-\mathbf{1}}=\mathbf{A}^{-\mathbf{1}} \mathbf{A}=\mathbf{I}$.

Example: Let

$$
\mathbf{A}=\left[\begin{array}{lll}
1 & 3 & 3 \\
2 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]
$$

Find \mathbf{A}^{-1}.

Solution: Set up

$$
\left[\begin{array}{lll|lll}
1 & 3 & 3 & 1 & 0 & 0 \\
2 & 1 & 1 & 0 & 1 & 0 \\
1 & 1 & 1 & 0 & 0 & 1
\end{array}\right]
$$

Now reduce:

$$
\begin{aligned}
(-2) R_{1}+R_{2} \\
(-1) R_{1}+R_{3}
\end{aligned}:\left[\begin{array}{rrr|rrr}
1 & 3 & 3 & 1 & 0 & 0 \\
0 & -5 & -5 & -2 & 1 & 0 \\
0 & -2 & -2 & -1 & 0 & 1
\end{array}\right] .
$$

Notice: the left hand side of the augmented matrix is now reduced, but it is not the 3×3 identity matrix. Therefore, $\mathbf{A}^{\mathbf{1}}$ does not exist.

Example: Find $\mathbf{A}^{-\mathbf{1}}$ if $\mathbf{A}=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$.

Solution:

$$
\begin{gathered}
{\left[\begin{array}{ll|ll}
a & b & 1 & 0 \\
c & d & 0 & 1
\end{array}\right]} \\
(1 / a) R_{1}:\left[\begin{array}{ll|ll}
1 & \frac{b}{a} & \frac{1}{a} & 0 \\
c & d & 0 & 1
\end{array}\right] \text { assuming } a \neq 0 \\
(-c) R_{1}+R_{2}:\left[\begin{array}{cc|cc}
1 & \frac{b}{a} & \frac{1}{a} & 0 \\
0 & \frac{a d-b c}{a} & -\frac{c}{a} & 1
\end{array}\right] \\
\left(\frac{a}{a d-b c}\right) R_{2}:\left[\begin{array}{ll|l|l}
1 & \frac{b}{a} & \frac{1}{a} & 0 \\
0 & 1 & -\frac{c}{a d-b c} & \frac{a}{a d-b c}
\end{array}\right] \text { assuming } a d-b c \neq 0 \\
\left(-\frac{b}{a}\right) R_{2}+R_{1}:\left[\begin{array}{ll|rr}
1 & 0 & \frac{d}{a d-b c} & -\frac{b}{a d-b c} \\
0 & 1 & -\frac{c}{a d-b c} & \frac{a}{a d-b c}
\end{array}\right] .
\end{gathered}
$$

The conclusion is that if $\mathbf{A}=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ where $a d-b c \neq 0$, then $\mathbf{A}^{-\mathbf{1}}=\frac{1}{a d-b c}\left[\begin{array}{rr}d & -b \\ -c & a\end{array}\right]$. Note that even though we stated that $a \neq 0$ in the first row reduction step, the final result is valid even if $a=0$. This form for $\mathbf{A}^{\mathbf{- 1}}$ is very convenient in practice.

Problems for Section 5

Find the inverses (if they exist) of the following matrices:
1.

$$
\left[\begin{array}{ll}
3 & 2 \\
5 & 3
\end{array}\right]
$$

2.

$$
\left[\begin{array}{ll}
6 & 9 \\
4 & 6
\end{array}\right]
$$

3.

$$
\left[\begin{array}{ll}
4 & -3 \\
1 & -2
\end{array}\right]
$$

4.

$$
\left[\begin{array}{rrr}
3 & 1 & 0 \\
1 & 1 & 1 \\
1 & -1 & 2
\end{array}\right]
$$

5.

$$
\left[\begin{array}{rrr}
1 & -4 & 8 \\
1 & -3 & 2 \\
2 & -7 & 10
\end{array}\right]
$$

6. Use your answers to 1 . and 3. to verify that $(\mathbf{A B})^{-1}=\mathbf{B}^{\mathbf{1}} \mathbf{A}^{-\mathbf{1}}$.

Solutions to Problems for Section 5

1.

$$
\left[\begin{array}{rr}
-3 & 2 \\
5 & -3
\end{array}\right]
$$

2. Does not exist.
3.

$$
\left[\begin{array}{ll}
2 / 5 & -3 / 5 \\
1 / 5 & -4 / 5
\end{array}\right]
$$

4.

$$
\left[\begin{array}{rrr}
3 / 8 & -1 / 4 & 1 / 8 \\
-1 / 8 & 3 / 4 & -3 / 8 \\
-1 / 4 & 1 / 2 & 1 / 4
\end{array}\right]
$$

5. Does not exist.
