1 The Binomial Theorem: Another Approach

1.1 Pascal's Triangle

In class (and in our text) we saw that, for integer $n \geq 1$, the binomial theorem can be stated

$$
(a+b)^{n}=c_{0} a^{n}+c_{1} a^{n-1} b+c_{2} a^{n-2} b^{2}+\cdots+c_{n-1} a b^{n-1}+c_{n} b^{n}
$$

where the coefficients $c_{0}, c_{1}, \ldots, c_{n}$ are given by the $n^{\text {th }}$ row of Pascal's triangle:

For example, to expand $(a+b)^{5}$ we would construct the triangle as above, and read off the coefficients from the fifth row to conclude:

$$
(a+b)^{5}=a^{5}+5 a^{4} b+10 a^{3} b^{2}+10 a^{2} b^{3}+5 a b^{4}+b^{5}
$$

It would be nice if we could determine the coefficients $c_{0}, c_{1}, \ldots, c_{n}$ without having to construct the first n rows of the triangle. Fortunately, there is a way to do this. . . read on!

1.2 Factorial Notation and Binomial Coefficients

To obtain the coefficients in the expansion of $(a+b)^{n}$ for integer $n \geq 0$ without first constructing Pascal's triangle, we employ the factorial function. For integer $n \geq 1$, define

$$
n!=1 \cdot 2 \cdot 3 \cdots n
$$

and if $n=0$ we define $0!=1$. So, for example, $3!=6$, since $3!=3 \cdot 2 \cdot 1$. The expression n ! is read " n factorial" and this function arises in many areas of mathematics. n ! is the number of different ways of arranging n distinct objects, so it is useful in the study of probability and counting arguments.

We often have to simplify expressions involving factorials, as in
Example: Simplify

$$
\frac{(n+3)!}{n!}
$$

Solution:

$$
\begin{aligned}
\frac{(n+3)!}{n!} & =\frac{1 \cdot 2 \cdots n \cdot(n+1) \cdot(n+2) \cdot(n+3)}{1 \cdot 2 \cdots n} \\
& =(n+1) \cdot(n+2) \cdot(n+3)
\end{aligned}
$$

Using factorial notation, we can now define the binomial coefficient $\binom{n}{r}$. For integer $n \geq 0$ and $0 \leq r \leq n$,

$$
\binom{n}{r}=\frac{n!}{(n-r)!r!} .
$$

The expression $\binom{n}{r}$, read " n choose r " is also commonly denoted ${ }_{n} C_{r}$. Although we will not prove it here, one very important interpretation of $\binom{n}{r}\left(\right.$ or $\left.{ }_{n} C_{r}\right)$ is that it gives the number of different ways of forming a subset of r objects from a collection of n distinct objects.

Example: A lottery consists of randomly drawing six ping-pong balls from a collection of 49 numbered ping-pong balls. How many different outcomes are possible with this lottery?

Solution: We have 49 distinct objects and we are forming subsets of six, so there are

$$
\begin{aligned}
\binom{49}{6} & =\frac{49!}{43!6!} \\
& =\frac{44 \cdot 45 \cdot 46 \cdot 47 \cdot 48 \cdot 49}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6} \\
& =13,983,816 .
\end{aligned}
$$

So there are $13,983,816$ possible outcomes for any particular draw. In other words, if we bought a single ticket with six numbers, the probability of our ticket matching the six numbers drawn is $1 / 13,983,816$.

The reason we are interested in the binomial coefficients is that these are precisely the numbers which appear in Pascal's triangle. That is, entry $(r+1)$ of row n of Pascal's triangle is $\binom{n}{r}$, so we may think of Pascal's triangle as

$$
\begin{aligned}
& n=1: \quad\binom{1}{0} \quad\binom{1}{1} \\
& n=2: \quad\binom{2}{0} \quad\binom{2}{1} \quad\binom{2}{2} \\
& n=3: \quad\binom{3}{0} \quad\binom{3}{1} \quad\binom{3}{2} \quad\binom{3}{3} \\
& n=4: \quad\binom{4}{0} \quad\binom{4}{1} \quad\binom{4}{2} \quad\binom{4}{3} \quad\binom{4}{4} \\
& \begin{array}{ccccc}
n=5: & \binom{5}{0} & \binom{5}{1} & \binom{5}{2} & \binom{5}{3}
\end{array}\binom{5}{4} \quad\binom{5}{5}
\end{aligned}
$$

Using binomial coefficients, we may now restate the
Binomial Theorem: Let $n \geq 1$ be an integer. Then

$$
(a+b)^{n}=\binom{n}{0} a^{n}+\binom{n}{1} a^{n-1} b+\binom{n}{2} a^{n-2} b^{2}+\cdots+\binom{n}{n-1} a b^{n-1}+\binom{n}{n} b^{n} .
$$

The binomial theorem in this form makes it much easier to answer questions such as
Example: What is the coefficient of x^{13} in the expansion of $(3 x-5)^{20}$?
Solution: First, write

$$
(3 x-5)^{20}=[(3 x)+(-5)]^{20}
$$

so that, by the binomial theorem,

$$
\begin{aligned}
& {[(3 x)+(-5)]^{20}} \\
& =\binom{20}{0}(3 x)^{20}+\binom{20}{1}(3 x)^{19}(-5)+\binom{20}{2}(3 x)^{18}(-5)^{2}+\cdots+\binom{20}{19}(3 x)^{1}(-5)^{19}+\binom{20}{20}(-5)^{20}
\end{aligned}
$$

The x^{13} term is

$$
\binom{20}{7}(3 x)^{13}(-5)^{7}=-\frac{20!}{13!7!} 3^{13} 5^{7} x^{13}
$$

and so the coefficient of x^{13} in the expansion is

$$
-\frac{20!}{13!7!} 3^{13} 5^{7}=-9,655,618,668,750,000
$$

Note that, in this case, computing $-9,655,618,668,750,000$ is no simple task, and so it is certainly acceptable (indeed preferable!) to state the coefficient in the form $-\frac{20!}{13!7!} 3^{13} 5^{7}$, or even as $-\binom{20}{13} 3^{13} 5^{7}$.

1.3 Problems

1. Simplify $\frac{51!}{47!}$.
2. For integer $n \geq 0$ and $0 \leq r \leq n$, simplify

$$
\binom{n}{r}-\binom{n}{n-r}
$$

3. Expand $(\sqrt{x}+\sqrt{y})^{4}$.
4. Expand $\left(x^{2}-y^{3}\right)^{5}$.
5. Simplify $\binom{9}{3}\binom{5}{2}$.
6. Find the eleventh term in the expansion of $\left(2 a-b^{2}\right)^{13}$.

$$
0 z q_{\varepsilon}{ }^{p} 887 z \text { :Sut }
$$

7. A poker hand of five cards is dealt from a deck of 52 playing cards. How many different hands are possible?
$096{ }^{\prime} 86 \mathrm{c}^{\mathrm{s}} \mathrm{z}$: sue
8. Find the coefficient of x^{n} in the expansion of $(1+x)^{2 n}$.

$$
\begin{array}{|l|}
\hline \mathrm{z}(\mathrm{i} u) / \mathrm{i}\left(u_{\mathrm{Z}}\right)
\end{array}
$$

9. Suppose $n \geq 1$ is an integer. The expression $\frac{(x+h)^{n}-x^{n}}{h}$ is not defined if $h=0$. However, if you first simplify the expression (assuming $h \neq 0$) and then set $h=0$, you get a very simple result. What is it?
$\mathrm{t}-\mathrm{u}^{x u}$: sut
10. If the coefficients of x^{2} and x^{5} are the same in the expansion of $(x+1)^{n}$, what is n ?

$$
L=u \text { :sut }
$$

2 Sequences

2.1 Overview

A (numerical) sequence is a list of real numbers in which each entry is a function of its position in the list. The entries in the list are called terms. For example,

$$
1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots
$$

is a sequence with first term 1 , second term $1 / 2$, third term $1 / 3$, etc. A sequence is typically denoted $\left\{a_{n}\right\}_{n=1}^{\infty}$, where the subscript n, called the index, indicates the position of the term a_{n} in the list. That is,

$$
\begin{array}{rccc}
\left\{a_{n}\right\}_{n=1}^{\infty}= & a_{1}, & a_{2}, & a_{3}, \\
& \uparrow & \uparrow & \uparrow \\
& 1^{\text {st }} & 2^{\text {nd }} & 3^{\text {rd }} \\
& \text { term } & \text { term } & \text { term }
\end{array}
$$

The terms of a sequence are often given as a formula, which gives us the "recipe" for the sequence. For example, the sequence $\left\{\frac{1}{n}\right\}_{n=1}^{\infty}$ written out is

$$
\left\{\frac{1}{n}\right\}_{n=1}^{\infty}=\frac{1}{1}, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots
$$

Here, the general $n^{\text {th }}$ term is $a_{n}=1 / n$, so $a_{1}=1 / 1, a_{2}=1 / 2$, and so on.

The index does not always start at $n=1$. For that matter, the index need not be denoted with the letter n. For example,

$$
\begin{aligned}
\left\{2^{k}\right\}_{k=0}^{\infty} & =2^{0}, 2^{1}, 2^{2}, 2^{3}, \ldots \\
& =1,2,4,8, \ldots
\end{aligned}
$$

Here, $a_{k}=2^{k}, k \geq 0$.
Here's another example:
Example: Define a sequence by $b_{k}=k /\left(1+2^{k}\right), k=1,2,3, \ldots$. Write down the first three terms of the sequence.

Solution:

$$
\begin{aligned}
& b_{1}, b_{2}, b_{3} \\
= & \frac{1}{1+2^{1}}, \frac{2}{1+2^{2}}, \frac{3}{1+2^{3}} \\
= & \frac{1}{3}, \frac{2}{5}, \frac{1}{3}
\end{aligned}
$$

We are interested in two specific types of sequences: (i) arithmetic and (ii) geometric

2.2 Arithmetic Sequences

Definition: A sequence $a_{1}, a_{2}, a_{3}, \ldots$ with the property that

$$
\begin{gathered}
a_{2}-a_{1}=d \\
a_{3}-a_{2}=d \\
a_{4}-a_{3}=d \\
\vdots \\
a_{n}-a_{n-1}=d
\end{gathered}
$$

is called an arithmetic sequence with common difference d.
In simple terms, an arithmetic sequence is characterized by the property that the difference between consecutive terms is the same. An arithmetic sequence is also called an arithmetic progression.

Example: Let $a_{n}=5-2 n, n=1,2,3, \ldots$
(i) List the first three terms of the sequence.
(ii) Is the sequence arithmetic?
(iii) If yes to (ii), find the common difference.

Solution:

(i) The first three terms are

$$
\begin{aligned}
& a_{1}, a_{2}, a_{3} \\
= & 5-2(1), 5-2(2), 5-2(3) \\
= & 3,1,-1
\end{aligned}
$$

(ii) Suppose $k \geq 1$ is any positive integer. Then

$$
\begin{aligned}
& a_{k+1}-a_{k} \\
= & {[5-2(k+1)]-[5-2(k)] } \\
= & 5-2 k-2-5+2 k \\
= & -2
\end{aligned}
$$

Since k was arbitrary, we conclude that the difference between any two consecutive terms is -2 , and so the sequence is arithmetic.
(iii) From (ii) we conclude that the common difference is $d=-2$.

Example: Suppose $\left\{a_{n}\right\}_{n=1}^{\infty}$ is an arithmetic sequence with first term 3 and common difference $7 / 3$. Find a formula for a_{n}.

Solution: Since the common difference is $7 / 3$ and the first term is 3 , write out the first few terms to establish a pattern:

$$
\begin{aligned}
& a_{1}, a_{2}, a_{3}, a_{4}, \ldots \\
= & 3,3+7 / 3,3+7 / 3+7 / 3,3+7 / 3+7 / 3+7 / 3, \ldots \\
= & 3,3+7 / 3,3+2(7 / 3), 3+3(7 / 3), \ldots
\end{aligned}
$$

By inspection, we see that term n has form $3+(n-1)(7 / 3)$. That is, $a_{n}=3+(n-1)(7 / 3)$.
This last example generalizes to give a standard form for arithmetic sequences: an arithmetic sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ with first term a and common difference d has $n^{\text {th }}$ term $a_{n}=a+(n-1) d$.

2.3 Geometric Sequences

The general development of geometric sequences parallels that of arithmetic sequences, except that we consider division by a common value rather than addition:

Definition: A sequence $a_{1}, a_{2}, a_{3}, \ldots$ with the property that

$$
\begin{gathered}
\frac{a_{2}}{a_{1}}=r \\
\frac{a_{3}}{a_{2}}=r \\
\frac{a_{4}}{a_{3}}=r \\
\vdots \\
\frac{a_{n}}{a_{n-1}}=r
\end{gathered}
$$

is called a geometric sequence with common ratio r.
For a geometric sequence, the ratio of consecutive terms is the same. A geometric sequence is also called a geometric progression.

Example: Let $\left\{b_{n}\right\}_{n=1}^{\infty}=\left\{\frac{3}{7^{n-1}}\right\}_{n=1}^{\infty}$.
(i) List the first three terms of the sequence.
(ii) Is the sequence geometric?
(iii) If yes to (ii), find the common ratio.

Solution:

(i) The first three terms are

$$
\begin{aligned}
& b_{1}, b_{2}, b_{3} \\
= & \frac{3}{7^{1-1}}, \frac{3}{7^{2-1}}, \frac{3}{7^{3-1}} \\
= & 3, \frac{3}{7}, \frac{3}{49}
\end{aligned}
$$

(ii) Suppose $k \geq 1$ is any positive integer. Then

$$
\begin{aligned}
& \frac{b_{k+1}}{b_{k}} \\
= & \frac{3}{7^{k+1-1}} / \frac{3}{7^{k-1}} \\
= & \frac{3}{7^{k}} \frac{7^{k-1}}{3} \\
= & \frac{1}{7}
\end{aligned}
$$

Since k was arbitrary, we conclude that $b_{k+1} / b_{k}=1 / 7$ for all integers $k \geq 1$, so that the sequence is geometric.
(iii) From (ii) we conclude that the common ratio is $r=1 / 7$.

Example: Suppose $\left\{a_{n}\right\}_{n=1}^{\infty}$ is a geometric sequence with first term a and common ratio r. Find a formula for a_{n}.

Solution: Since the common ratio is r and the first term is a, the sequence has the form

$$
\begin{aligned}
& a_{1}, a_{2}, a_{3}, a_{4}, \ldots \\
= & a, a \cdot r, a \cdot r \cdot r, a \cdot r \cdot r \cdot r, \ldots \\
= & a, a r, a r^{2}, a r^{3}, \ldots
\end{aligned}
$$

By inspection, we see that term n has form $a r^{n-1}$. That is, $a_{n}=a r^{n-1}$.
This last example leads us to conclude: a geometric sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ with first term a and common ratio r has $n^{\text {th }}$ term $a_{n}=a r^{n-1}$.

2.4 Problems

1. Write the first four terms of the sequence defined by $a_{n}=\frac{2 n-1}{n^{2}+2 n}, n \geq 1$.

$$
\mp ६ / L ‘ \varepsilon / \mathrm{L} \times 8 / \varepsilon ‘ \varepsilon / \mathrm{L}: \mathrm{sue}
$$

2. For the sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ with first five terms $\sqrt{2}, 2, \sqrt{6}, 2 \sqrt{2}, \sqrt{10}$, give a possible expression for a_{n}.
$u_{\underline{Z} \wedge}$:suz
3. Find an expression for a_{n} for the arithmetic sequence $3 / 5,1 / 10,-2 / 5, \ldots$

$$
0 \mathrm{t} / \mathrm{g}(\mathrm{I}-u)-\mathrm{q} / \mathrm{g}: \text { sue }
$$

4. Find the $14^{\text {th }}$ term of the arithmetic sequence $3,7 / 3,5 / 3, \ldots$
غ/LI- :sue
5. An arithmetic sequence has $a_{17}=25 / 3$ and $a_{32}=95 / 6$. What is a_{6} ?
6. If $a_{1}=25, d=-14$ and $a_{n}=-507$ then what is n if the sequence is arithmetic?
7. Find the $23^{\text {rd }}$ term of the geometric sequence $7 / 625,-7 / 25, \ldots$

$$
\mathrm{Ot}_{\mathrm{F} \mathrm{G}}^{\mathrm{C}} \mathrm{~L} \text { : } \mathrm{Sut}
$$

8. Find an expression for a_{n} for the geometric sequence $2 / x, 4 / x^{2}, \ldots$

Math 152 Sec S0601/S0602
Notes on Binomial Theorem and Sequences
9. If a geometric sequence has $a_{4}=8 / 3$ and $a_{7}=64 / 3$, what is a_{5} ?
10. A geometric sequence has the property that $a_{n+3}=27 a_{n}$. What then is r ?

