Problems

1. Recall that the area of a triangle is given as one half the base times the height: $A=\frac{b h}{2}$. With reference to the triangle below (not necessarily a right triangle), find a formula for the area A which is in terms of θ, a and b.

2. Satellite tracking stations are located 200 km apart at positions A and B as shown in the figure below. A satellite in orbit passes directly over A and then B, and at a certain point in time later the stations measure the angles of elevation to the satellite at S as α and β as shown. Express the altitude h of the satellite in terms of the angles α and β.

3. A lighthouse keeper is standing on the lighthouse observation deck 25 m above the surface of the water. He observes a ship at an angle of depression α as shown in the figure below. If $\alpha=0.7^{\circ}$, approximately how far away is the ship? Round your answer to the nearest tenth of a kilometre.

4. Referring to the figure below, find an expression for x in terms of θ.

$$
(\theta+00 \mathrm{Z}-\theta \mathrm{Soog} \mathrm{~g}) \mathrm{Z}=x \text { :sue }
$$

5. At a certain point in time the moon is directly above point A on the earth, while at the same time it is just visible on the horizon from point B (see the figure below). Given that the shortest distance between A and B on the earth's surface is 9896 kilometres, and the circumference of the earth is 40,000 kilometres, what is the approximate distance from point A to the moon? Round to the nearest one thousand kilometres. (Hint: find angle θ first).

6. Compute the values of the following:
(a) $\sec \left(\frac{113 \pi}{6}\right)$.
(b) $\cot \left(\frac{-50 \pi}{4}\right)$.
(c) $\sin \left(\frac{47 \pi}{2}\right) \cos (-41 \pi) \cot \left(\frac{59 \pi}{2}\right)$.
(d) $\sec (\pi \csc (13 \pi / 6))$
7. Find all angles θ for which $\sin \theta=\csc \theta$.
8. Two cars leave the same location at $12: 00 \mathrm{pm}$. One travels east along a straight road at $100 \mathrm{~km} / \mathrm{hr}$, while the other travels northwest at $110 \mathrm{~km} / \mathrm{hr}$ along another straight road which makes an angle of 120° with the first road. At what time will the two cars be 400 km apart? (Round your answer to the nearest minute).
