Math 371 - Introductory Real Analysis

Sep 20 2019

Ordered Sets & the Real Numbers

Ordered Sets

Definition: A is an ordered set if there exists a relation "<" such that

(i) For any $x \in A$ and $y \in A$ exactly one of

$$x < y$$
, $x = y$, $y < x$

is true.

(ii) If
$$x < y$$
 and $y < z$ then $x < z$

(iii) \leq , >, \geq have the standard meaning.

Examples: N, Z, Q are ordered sets, but C is not, nor is (Z/nZ).

Bounded Sets: Definitions

Let $E \subset A$ where A is an ordered set.

- Definition: If there is b ∈ A such that x ≤ b for every x ∈ E we say that E is bounded above and b is an upper bound for E.
- Definition: If b₀ is an upper bound for E and b₀ ≤ b for every other upper bound b, then b₀ is called the least upper bound of E or the supremum of E, and we write

 $b_0 = \sup E$, read "soup of E"

- Definition: If there is a ∈ A such that x ≥ a for every x ∈ E we say that E is bounded below and a is a lower bound for E.
- ▶ Definition: If a₀ is a lower bound for E and a₀ ≥ a for every other lower bound a, then a₀ is called the greatest lower bound of E or the infimum of E, and we write

$$a_0 = \inf E$$
, read "inf of E"

Bounded Sets: Examples

• **Example:** $E = \{2, 3, 4\} \subset \mathbb{N}$.

1 is a lower bound for E, as is 2. 10 is an upper bound for E, as is 1000.

But inf E = 2, sup E = 4

• Example: $E = \left\{ \frac{1}{n} \mid n \in \mathbb{N} \right\} \subset \mathbb{Q}$.

 $\inf E = 0
ot\in E$, $\sup E = 1 \in E$

• Example: $E = \left\{ \sum_{k=0}^{n} \frac{1}{k!} \mid n \in \mathbb{N} \right\} \subset \mathbb{Q}.$

inf $E = 1 \in E$, sup E does not exist in \mathbb{Q} (sup E = e in fact).

Least Upper Bound Property

Definition: An ordered set A has the least upper bound property if every nonempty subset E ⊂ A that is bounded above has a least upper bound in A.

That is, sup E exists and sup $E \in A$

- Example: We saw that Q does not have the least upper bound property since
 e = 2.71828 ··· = sup {∑ⁿ_{k=0} 1/k! | n ∈ N} ∉ Q.
- To handle limits we need to extend Q to a field which has the least upper bound property.

Fields

Definition: A field is a set *F* together with two operations + and \cdot such that for any $x, y, z \in F$:

1.
$$x + y \in F$$

2.
$$x + y = y + x$$

3.
$$(x + y) + z = x + (y + z)$$

- 4. There exists a zero element $0 \in F$ such that 0 + x = x
- 5. There exists an element -x such that x + (-x) = 0
- 6. $x \cdot y \in F$

7.
$$x \cdot y = y \cdot x$$

$$8. \ (x \cdot y) \cdot z = x \cdot (y \cdot z)$$

9. There exists a unit element $1 \in F$ such that $1 \cdot x = x$

10. If $x \neq 0$ there exists an element 1/x such that $(1/x) \cdot x = 1$ 11. $x \cdot (y + z) = x \cdot y + x \cdot z$ 12. $1 \neq 0$

Examples of Fields

Familiar: $(\mathbb{Q}, +, \cdot)$ is a field

More unusual: Recall that for a, p ∈ N, a mod p = remainder upon division of a by p

Let p be a prime number and $\mathbb{F} = \{1, 2, \dots, p-1\}$.

For $a, b \in \mathbb{F}$ define $a +_{\mathbb{F}} b = a + b \mod p$

define $a \cdot_{\mathbb{F}} b = ab \mod p$

Then $(\mathbb{F}, +_{\mathbb{F}}, \cdot_{\mathbb{F}})$ is a field

Ordered Fields

Definition: An ordered set F is an ordered field if

F is a field (satisfies the field axioms),

$$x < y \implies x + z < y + z$$

•
$$x > 0$$
 and $y > 0 \implies xy > 0$

• $(\mathbb{Q}, +, \cdot)$ is an ordered field, but $(\mathbb{F}, +_{\mathbb{F}}, \cdot_{\mathbb{F}})$ is not.

Ordered Fields

The usual notions of positive (x > 0) and negative (x < 0) are defined for ordered fields, and the familiar operations and results involving inequalities still hold:

Proposition: For $x, y, z \in F$ an ordered field,

$$> x > 0 \implies -x < 0$$

•
$$x > 0$$
 and $y < z \implies xy < xz$

•
$$x < 0$$
 and $y < z \implies xy > xz$

$$\blacktriangleright x \neq 0 \implies x^2 > 0$$

$$\blacktriangleright \ 0 < x < y \implies 0 < 1/y < 1/x$$

The Real Numbers

- ▶ **Theorem:** There exists a unique ordered field \mathbb{R} with the least upper bound property such that $\mathbb{Q} \subset \mathbb{R}$
- ► Note: There are several techniques for constructing R. Two of the more popular are construction using Cauchy sequences, and construction using Dedeking cuts.
- In summary:

$$\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}$$

where $\mathbb Q$ and $\mathbb R$ are ordered fields, but only $\mathbb R$ has the least upper bound property.

▶ \mathbb{N}, \mathbb{Z} and \mathbb{Q} are countably infinite, but \mathbb{R} is uncountable.

• The set of irrational numbers $\mathbb{R} \setminus \mathbb{Q}$ is uncountable.