Math 371 - Introductory Real Analysis

Sep 11 2019

0.3.4: Equivalence Classes

A Word about \mathbb{N},\mathbb{Z} and \mathbb{Q}

We assume the existence of N, Z and Q with their standard order and algebraic properties.

► For elements
$$a/b, c/d \in \mathbb{Q} = \left\{ \frac{p}{q} : p, q \in \mathbb{Z}, q \neq 0 \right\},$$

 $\frac{a}{b} = \frac{c}{d}$ if and only if $ad = bc$

ln this way, \mathbb{Q} is a collection of equivalence classes.

Relations

• **Definition:** For a set *A*, a binary relation on *A* is a subset $\mathcal{R} \subset A \times A$.

For example, consider A = N and the relation of being "less than". Here R = {(a, b) ∈ N × N : a < b}.</p>

- Definition: A relation R on a set A is said to be an equivalence relation if it is
 - (i) reflexive: $(a, a) \in \mathcal{R}$ for every $a \in A$,
 - (ii) symmetric: $(a, b) \in \mathcal{R}$ if and only if $(b, a) \in \mathcal{R}$, and

(iii) transitive: if $(a, b), (b, c) \in \mathcal{R}$ then $(a, c) \in \mathcal{R}$.

For example, R₁ = {(a, b) ∈ N × N : a = b} is an equivalence relation, but R₂ = {(a, b) ∈ N × N : a < b} is not (why?).</p>

Equivalence Classes

Definition: For a set A on which an equivalence relation R is defined, we define the equivalence class containing a to be

$$[a] = \{x \in A : (a, x) \in \mathcal{R}\},\$$

the set of elements of A that are equivalent to a under \mathcal{R} . Here a is a representative of the class.

An equivalence relation R on a set A partitions A into disjoint equivalence classes.

Back to \mathbb{Q}

Q can thus be defined as

$$\mathbb{Q} = \{ [(a,b)] : (a,b) \in \mathbb{Z} imes \mathbb{N} \}$$

where the equivalence classes are given by the equivalence relation $((a, b), (c, d)) \in \mathcal{R} \iff ad = bc$.

- We normally just write a/b instead of [(a,b)] with the understanding that a/b represents all of the elements of Q equal to a/b.
- For example, "one half" may be represented by 1/2, 2/4, 3/6,..., but these are all representatives of a single element of Q.

0.3.5: Cardinality

The cardinality of a set is one way to describe the size of the set. \emptyset has zero elements, $\{\sqrt{2}, e, \pi\}$ has 3 elements– easy enough. But \mathbb{N} , \mathbb{Q} , \mathbb{R} , etc, have infinitely many elements, yet the "sizes" of these infinities differ in some sense. We wish to make this notion precise.

Cardinality

Definition: We say that sets *A* and *B* have the same cardinality if there exists a bijection $f : A \rightarrow B$, in which case we write |A| = |B|.

- 1. If $A = \emptyset$, |A| := 0. If $|A| = |\{1, 2, ..., n\}|$, |A| := n. In either case *A* is said to be finite.
- 2. $|A| \leq |B|$ if there is an injection from A to B.
- 3. |A| < |B| if there is an injection from A to B but no surjection.
- 4. *A* is countably infinite or denumerable if $|A| = |\mathbb{N}|$.
- 5. A is countable if $|A| = |\mathbb{N}|$ or |A| = n.
- 6. A is uncountable if not countable.
- 7. $|\mathbb{N}| = \aleph_0$, called aleph-naught.

Theorems

▶ Theorem (Cantor-Bernstein-Schröder): |A| = |B| if and only if $|A| \le |B|$ and $|B| \le |A|$.

• **Theorem:** If $A \subset B$ then $|A| \leq |B|$.