Math 371 - Introductory Real Analysis

Sep 9 2019

0.3.3: Functions

The Natural Numbers ℕ

► As a starting point for our work we assume the existence of the natural numbers N = {1, 2, 3, ...} together with their natural ordering

$$1<2<3<4<\cdots$$

- We will assume the well Ordering Property of N: Every nonempty subset of N has a smallest element.
- That is, for each nonempty A ⊂ N, there is x ∈ A such that x ≤ y for every y ∈ A.

Induction

Theorem: Suppose P(n) is a statement depending on a natural number n. If

(i) P(1) is true, and

(ii) P(n+1) is true whenever P(n) is true

then P(n) is true for every $n \in \mathbb{N}$.

Assumed knowledge for this course. See Section 0.3.2.

Functions

Definition: For sets A and B, the Cartesian Product A × B is

$$A \times B = \{(x, y) : x \in A \text{ and } y \in B\}$$

- Definition: For sets A and B, a function f : A → B is a subset f ⊂ A × B such that for each x ∈ A there is a unique (i.e. one and only one) (x, y) ∈ f, in which case we write f(x) = y.
- Often a function f is given by a formula, but this need not be the case.
- A functions is sometimes called a mapping

Domain and Range

Definition: Let $f : A \rightarrow B$ be a function.

• The set *A* is called the domain of *f*, written $\mathcal{D}(f)$.

• The range of f is the set

$$\mathcal{R}(f) = \{y \in B : f(x) = y \text{ for some } x \in A\}.$$

▶ Notice $\mathcal{R}(f) \subset B$, and possibly $\mathcal{R}(f) \subsetneq B$.

Direct and Inverse Images

Definition: Let $f : A \rightarrow B$ be a function.

- For $C \subset A$ the direct image of C is $f(C) = \{f(x) \in B : x \in C\}.$
- For $D \subset B$ the inverse image of D is $f^{-1}(D) = \{x \in A : f(x) \in D\}.$
- Caution: writing f⁻¹(D) is not meant to imply that f has an associated inverse function– more on inverse functions later.

Injective, Surjective, Bijective

Definition: Let $f : A \rightarrow B$ be a function.

- ► *f* is said to be injective or one-to-one or an injection if $f(x_1) = f(x_2)$ implies $x_1 = x_2$.
- ▶ *f* is said to be surjective or onto or a surjection if f(A) = B. That is, for each $y \in B$ there is some $x \in A$ such that f(x) = y.
- If f is both injective and surjective it is said to be bijective or a bijection.

Inverse Functions

Definition: Let $f : A \to B$ be a bijective function. We define the function $f^{-1} : B \to A$ as follows: For $y \in B$, $f^{-1}(y) = x \in A$ such that f(x) = y.

 f^{-1} defined in this way is indeed a function since

▶ If $y \in B$, $f^{-1}(\{y\})$ is nonempty by the surjectivity of f.

▶ If $x_1, x_2 \in f^{-1}(\{y\})$ then $f(x_1) = f(x_2) = y$, so that $x_1 = x_2$ since *f* is injective. That is, $f^{-1}(\{y\})$ contains one and only one element, which we have defined to be $f^{-1}(y)$.

Function Composition

Definition: Let $f : A \to B$ and $g : B \to C$ be functions. We define the composition of g with f as the function $g \circ f : A \to C$ with property

 $(g \circ f)(x) = g(f(x))$