Math 371 - Introductory Real Analysis

Sep 6 2019

0.3: Set Theory

Definition: A set S is a collection of objects called members or elements.

▶ Write $x \in S$ if x is an element of S, $x \notin S$ if x is not an element of S.

• $S = \emptyset$ if S contains no elements.

Subsets

Definition: A set A is a subset of B, written A ⊂ B, if x ∈ B for every x ∈ A.

We write A = B if both $A \subset B$ and $B \subset A$.

▶ Note that $A \subset B$ if A = B. To emphasize that $A \subset B$ but $A \neq B$ write $A \subsetneq B$.

Union, Intersection, Complement

Definition:

Set union: $A \cup B = \{x : x \in A \text{ or } x \in B\}$

Set intersection:
$$A \cap B = \{x : x \in A \text{ and } x \in B\}$$

Set complement:
$$A \setminus B = \{x : x \in A \text{ and } x \notin B\}$$

If A is the universe, that is, the set of all elements under consideration, A \ B can instead be written B^c, read "B complement".

Some Important Sets

• Natural numbers:
$$\mathbb{N} = \{1, 2, 3, \ldots\}$$

• Integers:
$$\mathbb{Z} = \{\dots, -3, -2, -1, 0, 1, 2, 3, \dots\}$$

► Rational numbers:
$$\mathbb{Q} = \left\{ rac{p}{q} : p, q \in \mathbb{Z}, q \neq 0
ight\}$$

Real numbers: \mathbb{R} . More on the definition of \mathbb{R} later.

Well Ordering Property of N

We will assume the well Ordering Property of \mathbb{N} :

Every non-empty subset of \mathbb{N} has a smallest element.

Fancier Unions and Intersections

Definition: Let \mathcal{I} be a set, called an index set.

•
$$x \in \bigcup_{\alpha \in \mathcal{I}} A_{\alpha}$$
 if $x \in A_{\beta}$ for at least one $\beta \in \mathcal{I}$

•
$$x \in \bigcap_{\alpha \in \mathcal{I}} A_{\alpha}$$
 if $x \in A_{\beta}$ for every $\beta \in \mathcal{I}$