Question 1: Find a vector 5 units long in the direction opposite to the direction of $\mathbf{v} = (3/5)\mathbf{i} + (4/5)\mathbf{k}$.

[4]

[2]

[2]

Question 2: For this question use the vectors u=-i-k and v=i+j+2k .

(i) Find the angle between \mathbf{u} and \mathbf{v} .

(ii) Find the vector projection of ${\boldsymbol{u}}$ onto ${\boldsymbol{v}}.$

(iii) Find a unit vector that is orthogonal to both ${\bf u}$ and ${\bf v}$.

Question 3: A parallelogram has vertices (corners) at the points A(2, -1, 4), B(1, 0, -1), C(1, 2, 3) and D(2, 1, 8).

(i) Find the area of the parallelgram.

(ii) Find an equation of the plane containing the parallelogram.

Question 4: Find the point in which the line through the origin perpendicular to the plane 2x - y - z = 4 intersect the plane 3x - 5y + 2z = 6.

Question 5: Find an equation of the line through the point (0, 14, -10) that is parallel to the line x = -1+2t, y = 6 - 3t, z = 3 + 9t.

[5]

Question 6: Find the (shortest) distance between the parallel planes x - 2y + 3z = 1 and x - 2y + 3z = 4.

Question 7: A force of magnitude 10 N acts directly upward from the *xy*-plane on an object of mass 2 kg. The object starts at the origin with initial velocity $\mathbf{v}(0) = \mathbf{i} + \mathbf{j}$. Find $\mathbf{r}(1)$, its position after one second.

Question 8: Determine the length of the curve $\mathbf{r}(t) = \langle (2/3)t^{3/2}, \cos(2t), \sin(2t) \rangle$ for $0 \le t \le 5$.

Question 9: For the space curve $\mathbf{r}(t) = \langle t^2, \sin(t) - t\cos(t), \cos(t) + t\sin(t) \rangle$ find the following at $t = \pi$:

(i) The unit tangent vector $\mathbf{T}(\pi)$.

(ii) The unit normal vector $\mathbf{N}(\pi)$.

(iii) The curvature κ .