Question 1 [$\mathbf{1 2}$ points]: Evaluate the following limits, if they exist. If a limit does not exist because it is $\pm \infty$, state which it is and include an explanation of your reasoning. You may use the fact that $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$.
(a) $\lim _{x \rightarrow-5} \frac{x^{2}+3 x-10}{x^{2}+8 x+15}$
(b) $\lim _{x \rightarrow 9} \frac{4-\sqrt{x+7}}{9-x}$
(c) $\lim _{x \rightarrow 0} \frac{\tan (2 x)+3 x}{\sin (2 x)}$
(d) $\lim _{x \rightarrow 2^{-}} \frac{-4}{x^{2}-x-2}$

Question 2 [8 points]: Consider the function $f(x)=x^{3}-2 x^{2}-1$.
(a) Find an equation of the tangent line to the graph of $f(x)$ at $x=-2$.
(b) Find the x-value(s) where the tangent line to the graph of $f(x)$ is parallel to the line $y=4 x-2$.

Question 3 [15 points]: Differentiate the following functions (you do not have to simplify your answers):
(a) $y=4 \ln \left(3 x^{4}-5 x^{2}\right)$
(b) $y=\frac{e^{x}-x}{x^{2}+\sin x}$
(c) $y=5^{x} \sec x$
(d) $y=\left(5 x^{3}-\frac{7}{x^{2}}\right) e^{\cos x}$
(e) $y=\tan \left(\sqrt{x^{3}-\log _{5} x}\right)$

Question 4 [5 points]: Use the definition of the derivative to find $f^{\prime}(x)$ for $f(x)=\frac{3}{x+7}$. (A score of 0 will be given if $f^{\prime}(x)$ is found using the differentiation rules.)

Question 5 [10 points]:
(a) Use implicit differentiation to find $\frac{d y}{d x}$ for $e^{x y^{2}}=4 x^{2}-\cos y$.
(b) Use logarithmic differentiation to find $\frac{d y}{d x}$ for $y=\frac{\sin ^{10} x}{7^{\left(x^{2}-4 x+1\right)}}$.

Question 6 [10 points]:
(a) Find the general antiderivative for each of the following functions:
(i) $\quad f(x)=-\sec ^{2} x-4 \sin x+7 e^{x}$
(ii) $f(x)=\frac{3 x^{6}-4 x+2 \sqrt[4]{x^{3}}}{x^{2}}$
(b) Find the function $g(t)$ such that $g^{\prime}(t)=5 t^{4}+9 t^{2}$ and $g(-1)=7$.

Question 7 [10 points]: The graph of $f^{\prime}(x)$ is shown below (note this is the graph of $f^{\prime}(x)$, not $f(x))$:

(a) On what interval(s) is f decreasing?
(b) At what x-value(s) does $f(x)$ have local minima?
(c) On what interval(s) is the graph of $f(x)$ concave up?
(d) At what x-value(s) does the graph of $f(x)$ have inflection points?
(e) At what x-value(s) does $f^{\prime \prime}(x)$ not exist?

Question 8 [5 points]: You have completed the analysis of a function $f(x)$ and found the information listed below. Sketch the graph of $y=f(x)$.

- The domain of $f(x)$ is $(-\infty, 2),(2, \infty)$.
- $f(x)$ has the following function values:

x	-6	-3	-1	0	3	5	9
$f(x)$	-2	0	3	5	0	2	-1

- $\lim _{x \rightarrow \infty} f(x)=-3, \lim _{x \rightarrow-\infty} f(x)=\infty$
- $\lim _{x \rightarrow 2} f(x)=-\infty$
- $f^{\prime}(-6)=f^{\prime}(0)=f^{\prime}(5)=0$
- $f^{\prime}(x)>0$ on $(-6,0)$ and $(2,5)$
- $f^{\prime}(x)<0$ on $(-\infty,-6),(0,2)$ and $(5, \infty)$
- $f^{\prime \prime}(-1)=f^{\prime \prime}(9)=0$
- $f^{\prime \prime}(x)>0$ on $(-\infty,-1)$ and $(9, \infty)$
- $f^{\prime \prime}(x)<0$ on $(-1,2)$ and $(2,9)$

Question 9 [12 points]: The function $f(x)=\frac{x}{x^{2}+1}$ has $f^{\prime}(x)=\frac{1-x^{2}}{\left(x^{2}+1\right)^{2}}$ and $f^{\prime \prime}(x)=\frac{2 x\left(x^{2}-3\right)}{\left(x^{2}+1\right)^{3}}$.
(a) Find the intervals on which $f(x)$ is increasing or decreasing.
(b) Find the local maximum and minimum values of $f(x)$.
(c) Find the intervals on which $f(x)$ is concave up or concave down.
(d) Find the inflection points of $f(x)$.

Question 10 [8 points]: A straight wire is 60 cm long. The wire is bent into the shape of an L, where the bend forms a right angle. What is the shortest possible distance between the two ends of the bent wire?

Question 11 [10 points]: Two ships, the Erebus and the Terror, are sailing the high seas in search of the Northwest Passage. At 6:00 am, the Erebus is 30 km north of the Terror. The Erebus is sailing west at $8 \mathrm{~km} / \mathrm{hr}$ and the Terror is sailing east at $12 \mathrm{~km} / \mathrm{hr}$. How fast is the distance between the ships changing at 8:00 am?

Question 12 [10 points]: A cylindrical can with a bottom but no top is to be made from 300π square meters of aluminum. Find the largest possible volume of such a can. (Note that the volume of cylinder is $V=\pi r^{2} h$.)

Question 13 [5 points]: Consider the function $f(x)=a x^{3}+b x^{2}+c$. Find the values of a, b and c so that $(-1,0)$ is a point on $f(x)$ and so that $f(x)$ has a point of inflection at $(1,1)$.

