Question 1: Evaluate the following limits, if they exist. If a limit does not exist because it is $+\infty$ or $-\infty$, state which with an explanation of your reasoning. (Do not use L'Hospital's rule to evaluate limits.)
(a) $\lim _{x \rightarrow 0} \frac{3 x+1}{x^{2}(x+1)}$
(b) $\lim _{x \rightarrow-4} \frac{2 x+8}{|x+4|}$

Question 2: Decide whether the following function is continuous at $x=4$. Explain your reasoning.

$$
f(x)= \begin{cases}\frac{x^{2}-4 x}{x^{2}-3 x-4} & \text { if } x \neq 4 \\ 5 / 4 & \text { if } x=4\end{cases}
$$

Question 3:

(a) Use the limit definition of the derivative to find $f^{\prime}(x)$ if $f(x)=\sqrt{x+1}$. Neatly show all steps and use proper notation. (No credit will be given if $f^{\prime}(x)$ is found using derivative rules.)
(b) Find an equation of the tangent line to the graph of $y=\sqrt{x+1}$ at the point where $x=8$.

Question 4: Find the following derivatives (it is not necessary to simplify your answers, but marks will be deducted for improper use of notation):
(a) $f(x)=\frac{\sqrt{x}}{1+\sqrt{x}}$
(b) $y=\left(t^{3}-3\right)(2 \tan (t)+t)$

[3]

(c) $g(x)=\frac{\sec (x)}{1+x+x^{2}}$

[3]

(d) $y=3 \sin (\pi)-2 \cos (\pi)-\frac{\pi^{2}}{x}$

Question 5: Find the following derivatives (it is not necessary to simplify your answers, but marks will be deducted for improper use of notation):
(a) $y=\left(x^{2}+\csc (x)+1\right)^{3}$
(b) $y=\cos ^{4}(1-2 t)$
(c) $g(x)=\sqrt{\frac{x^{3}+x}{x^{5}}}$
(d) $y=\sqrt[3]{x}[\sin (x)-\cos (x)]^{2}$

Question 6: A rock thrown vertically from the surface of the moon reaches a height of

$$
s(t)=24 t-k t^{2} \text { metres }
$$

in t seconds where k is a constant. The acceleration experienced by the rock is a constant $-1.6 \mathrm{~m} / \mathrm{s}^{2}$. How long does it take for the rock to reach a velocity equal to half of its initial value?

Question 7: Find an equation of the tangent line to the curve defined by $y=2 \sin (x-y)$ at the point $(x, y)=(\pi, 0)$.

