[3]

Question 2: Express as a single simplified fraction: $u + 1 + \frac{u}{u+1}$

[3]

Question 4: Express as a single simplified fraction:

$$\frac{x}{x^2 - 16} - \frac{x - 2}{x^2 + 3x - 4}$$

[3]

Question 5: Rationalize and simplify: $\sqrt{x^2 + x} - \sqrt{x^2 - x}$

[4]

Question 6: The lines ax + 3y + p = 0 and 7x + by + q = 0 are perpendicular (here *a*, *b*, *p*, *q* are constants). Determine $\frac{a}{b}$.

Question 7: Determine $\tan(7\pi/4) - \csc(2\pi/3)$. Express your answer as a single simplified fraction.

[3]

Question 8: Find all values of x in the interval $[0, 2\pi]$ for which $2\tan^2(x) - 1 = 5$.

Question 9: Let $f(x) = x + \frac{1}{x}$ and $g(x) = \frac{x+1}{x+2}$. Determine and simplify $(f \circ g)(x)$ and state the domain.

Question 10: Evaluate and simplify the difference quotient $\frac{f(a+h) - f(a)}{h}$ where $f(x) = \frac{x}{x+1}$. Express your answer as a single simplified fraction.

[4]

Question 11: Suppose $H(x) = \frac{1}{x + \sqrt{x}}$. Find functions f(x) and g(x) so that $H(x) = (f \circ g)(x)$. Do not let f(x) = x or g(x) = x. (There are many possible correct answers.)

[3]

Question 12: Consider the following graph of y = f(x):

Let

$$c = f(4)$$

 $a = \lim_{x \to -3^-} f(x)$

 $b = \lim_{x \to 4} f(x)$

Determine a + b + c.

Question 13: Evaluate the following limits, if they exist:

(a)
$$\lim_{h\to 0} \frac{\sqrt{5h+4}-2}{h}$$

(b)
$$\lim_{x \to -2} \frac{x^2 + x - 2}{x^2 + 7x + 10}$$

(c)
$$\lim_{x \to 1} \frac{\left(\frac{1}{x} - 1\right)}{x - 1}$$

[4]