Question 1: Suppose f is an invertible function with $f(4)=5$ and that the slope of the tangent line to $y=f(x)$ at $x=4$ is $2 / 3$. Find the equation of the tangent line to the graph of $y=f^{-1}(x)$ at $x=5$.

Question 2:

(a) Determine $\arccos (\cos (7 \pi / 4))$
(b) Simplify $\tan \left(\sin ^{-1}(a / b)\right)$. Your final answer should not contain any trigonometric or inverse trigonometric functions.

Question 3:
(a) Let $f(x)=\arcsin \left(e^{x}\right)$. Find $f^{\prime}(x)$.
(b) Let $f(x)=e^{\arctan (1+x)}$. Find $f^{\prime}(0)$.

Question 4: Find the following limits, if they exist:
(a) $\lim _{x \rightarrow 0} \frac{e^{\left(x^{2}\right)}-\cos (x)}{x^{2}}$
(b) $\lim _{x \rightarrow 0^{+}} \sqrt{x} \ln (x)$

Question 5: Find the absolute maximum and absolute minimum values of $f(x)=\frac{4 x}{x^{2}+4}$ on the interval $[0,5]$.

Question 6: For this question use the function $f(x)=1+4 x^{3}+x^{4}$.
(a) Find the intervals of increase and decrease of f.
(b) State the relative (or local) extrema of f.

Question 7: For this question again use the function $f(x)=1+4 x^{3}+x^{4}$.
(a) Find the intervals of concavity of f.
(b) State the inflection points of the graph of $y=f(x)$.

BONUS:

(a) A girl is flying a kite which maintains a constant altitude of 40 m above her hand. The wind carries the kite horizontally away from her at a rate of $5 \mathrm{~m} / \mathrm{s}$. At what rate is the length of string from the girl to the kite changing when the string length is exactly 50 m ?

(b) Referring to part (a), at what rate is the angle between the string and the horizontal changing at that same instant?

