First Derivatives and Extreme Values

What information does $f^{\prime}(x)$ give us about the maximum and minimum values of a function $f(x)$? Using the following graph of a general function let's introduce some terminology and make some observations:

Here f has domain $D=[a, b]$.
Recall:

- an interval is a continuous segment of the real line. For example, $[0,1],(-\pi, 7],(0, \infty)$ and $(-\infty, \infty)$ are all intervals.
- A closed interval is an interval which includes its endpoints. For example, $[0,1]$ is closed, but $(-\pi, 7],(0, \infty)$ and $(-\infty, \infty)$ are not.

Definitions and Theorems

absolute (or global) maximum: f has an absolute maximum of $f(c)$ at $x=c$ if $f(c) \geq f(x)$ for every x in D.
absolute (or global) minimum: f has an absolute minimum of $f(c)$ at $x=c$ if $f(c) \leq f(x)$ for every x in D.
extreme values (or extrema) of f : the absolute maximum of f together with the absolute minimum. relative (or local) maximum: f has a relative maximum of $f(c)$ at $x=c$ if $f(c) \geq f(x)$ for every x in an open interval containing c.
relative (or local) minimum: f has a relative minimum of $f(c)$ at $x=c$ if $f(c) \leq f(x)$ for every x in an open interval containing c.

Extreme Value Theorem: If f is continuous on $[a, b]$ then f attains an absolute maximum $f(c)$ and an absolute minium $f(d)$ for some numbers c and d in $[a, b]$.

So, referring to the graph above, we would say:

- f has an absolute maximum of $f(r)$ at $x=r$;
- f has an absolute minimum of $f(a)$ at $x=a$;
- f has relative maxima of $f(p)$ at $x=p$ and $f(r)$ at $x=r$;
- f has a relative minima of $f(q)$ at $x=q$ and $f(t)$ at $x=t$

Note:
(i) End points can correspond to absolute but not relative maxima or minima.
(ii) A point interior to the interval can correspond to both a relative and absolute maximum or minimum.

Another definition:
critical number: a critical number of a function f is a number c in the domain of f such that
(i) $f^{\prime}(c)=0$, or
(ii) $f^{\prime}(c)$ does not exist

Referring to our graph, $x=p, x=q, x=r, x=s$ and $x=t$ are critical numbers of f. Notice the behaviour of the graph of $y=f(x)$ at each of these critical numbers. Indeed,

Fermat's Theorem: If f has a relative maximum or relative minimum at $x=c$ and if $f^{\prime}(c)$ exists, then $f^{\prime}(c)=0$.

Fermat's Theorem tells us that relative extrema must occur at critical numbers, however it does not say that every critical number corresponds to a relative extremum-look at $x=s$ in our graph above.

Now observe: absolute extrema must occur inside (a, b), in which case they are also relative extrema, or at the endpoints $x=a$ or $x=b$. This gives us a simple method for determining absolute extrema:

Closed Interval Method: To determine the absolute extrema of a continuous function f on a closed interval $[a, b]$:
(i) Evaluate f at the critical numbers in (a, b).
(ii) Evaluate $f(a)$ and $f(b)$.
(iii) Select the largest and smallest values from (i) and (ii) - these are the absolute maximum and minimum, respectively, of f on $[a, b]$.

