Curve Sketching

So far we have seen that
(i) If $f^{\prime}(x)>0$ on an interval then the graph of $y=f(x)$ is increasing on the interval;
(ii) If $f^{\prime}(x)<0$ on an interval then the graph of $y=f(x)$ is decreasing on the interval;
(iii) If $f^{\prime \prime}(x)>0$ on an interval then the graph of $y=f(x)$ is concave up on the interval;
(iv) If $f^{\prime \prime}(x)<0$ on an interval then the graph of $y=f(x)$ is concave down on the interval.

Using this information we also identified relative extrema and inflection points. To sketch a fairly accurate graph of $y=f(x)$ we also make use of
(v) The x-intercepts of $y=f(x)$,
(vi) the y-intercept of $y=f(x)$,
(vii) the horizontal asymptotes of $y=f(x)$, and
(viii) the vertical asymptotes of $y=f(x)$.

Example

The function $f(x)=\frac{(x-1)^{2}}{(x-3)^{2}}$ has derivatives

$$
f^{\prime}(x)=\frac{-4(x-1)}{(x-3)^{3}} \quad \text { and } \quad f^{\prime \prime}(x)=\frac{8 x}{(x-3)^{4}}
$$

Sketch the graph of $y=f(x)$ using the
(i) x-intercepts
(ii) y-intercepts
(iii) vertical asymptotes
(iv) horizontal asymptotes
(v) intervals of increase/decrease
(vi) local extreme values
(vii) intervals of concavity
(viii) inflection points

Example 2

Suppose we have analyzed the function $y=f(x)$ and found the following information:
(i) The domain of f is $(-\infty, 1) \cup(1, \infty)$.
(ii) $f(x)$ has the following function values:

x	-3	-2	-1	$-1 / 2$	0	$1 / 2$	3	4
$f(x)$	$3 / 2$	2	1	0	$-1 / 2$	0	-1	$-3 / 2$

(iii) $\lim _{x \rightarrow-\infty} f(x)=1, \lim _{x \rightarrow \infty} f(x)=-2$
(iv) $\lim _{x \rightarrow 1^{-}} f(x)=\infty, \lim _{x \rightarrow 1^{+}} f(x)=-\infty$
(v) $f^{\prime}(-2)=f^{\prime}(0)=f^{\prime}(3)=0$
(vi) $f^{\prime}(x)>0$ on $(-\infty,-2),(0,1)$ and $(1,3)$;
$f^{\prime}(x)<0$ on $(-2,0)$ and $(3, \infty)$
(vii) $f^{\prime \prime}(-3)=f^{\prime \prime}(-1)=f^{\prime \prime}(4)=0$
(viii) $f^{\prime \prime}(x)>0$ on $(-\infty,-3),(-1,1)$ and $(4, \infty)$; $f^{\prime \prime}(x)<0$ on $(-3,-1)$ and $(1,4)$

Sketch the graph of $y=f(x)$.

