Question 1: Find the following derivatives (it is not necessary to simplify your answers, but marks will be deducted for improper use of notation):
(a) $f(x)=5\left(1+x+x^{2}\right)^{3}$
(b) $y=\sin \left(\pi t^{3}\right)$
(c) $g(x)=\frac{\tan \left(e^{x}\right)}{7}$
(d) $y=\sqrt{2 x-\ln (x)}$

Question 2: Find the following derivatives (it is not necessary to simplify your answers, but marks will be deducted for improper use of notation):
(a) $f(x)=\csc \left(\sqrt{1+x^{2}}\right)$
(b) $y=\cos ^{2}\left(e^{\pi t}\right)$
(c) $g(x)=\frac{\left(1-x^{2}\right)^{5}}{(1+\sin (x))^{2}}$
(d) $y=2^{\sqrt{x}} \log _{2}(x)$

Question 3: Determine the equation of the tangent line to the curve

$$
x^{2} y^{2}-2=2 \cos (\pi y)
$$

at the point $(x, y)=(1,2)$.

Question 4: Use a linear approximation (or differentials) to estimate the value of (0.9) ${ }^{7}$.

Question 5: A spotlight on the ground shines on a wall 12 m away and a man 2 m tall walks from the spotlight to the building at a speed of $1 / 2 \mathrm{~m} / \mathrm{s}$. How fast is the length of the man's shadow on the building decreasing when he is 6 m from the building?

Question 6: Find y^{\prime} where $y=(1+x)^{1 / x}$ (logarithmic differentiation may help here.)

Question 7: The graph of the exponential function $f(x)=C a^{x}$ passes through the points $(1,6)$ and $(3,24)$.
Determine the values of the constants a and C.

