Question 1: The following function has domain $[0, \infty)$:

$$
f(x)= \begin{cases}\frac{\sqrt{x}-2}{x-4} & \text { if } x \neq 4 \\ c & \text { if } x=4\end{cases}
$$

Determine the value of c so that f is continuous at $x=4$.

Question 2: Use the Intermediate Value Theorem to show that the equation $\sin (x)=3-2 x$ has a solution on the interval $[0,2 \pi]$.

Question 3: Evaluate the following limits, if they exist. If a limit does not exist because it is $+\infty$ or $-\infty$, state which with an explanation of your reasoning. (Do not use L'Hospital's rule to evaluate limits.)
(a) $\lim _{x \rightarrow-\infty} \frac{6 x^{5}-7 x^{3}-5}{7 x^{6}-6 x^{5}+5}$
(b) $\lim _{x \rightarrow 2^{+}} \frac{\cos (\pi x)}{2-x}$
(c) $\lim _{x \rightarrow 1} \frac{2-x}{(x-1)^{3}}$

Question 4:
(a) Use the limit definition of the derivative to find $f^{\prime}(x)$ if $f(x)=\frac{5}{x+7}$. Neatly show all steps and use proper notation. (No credit will be given if $f^{\prime}(x)$ is found using derivative rules.)
(b) Now check your work in part (a) by finding $\frac{d}{d x}\left[\frac{5}{x+7}\right]$ using derivative rules.

Question 5: Find the following derivatives (it is not necessary to simplify your answers, but marks will be deducted for improper use of notation):
(a) $f(x)=3 \sqrt{x}-\frac{2}{3 x}+\pi^{2}$
(b) $y=\left(t^{3}-3 \cos (t)\right)(2 t-\sqrt{\pi})$
(c) $g(x)=\frac{x^{2}-\sqrt[3]{x}}{\tan (x)}$
(d) $y=\frac{\sin (\theta)}{2}-\frac{2}{\sin (\theta)}$

Question 6: The position of a particle along a straight line at time t is given by

$$
s(t)=\frac{t^{3}}{3}+q t(t+1)
$$

where q is a constant. At time $t=1$ the velocity and acceleration are the same. Determine the value of the constant q.

Question 7: Find an equation of the tangent line to $y=\frac{\pi^{2} \cos (x)}{x}$ at the point where $x=\pi$.

