Question 1:

(a) Determine the linear approximation $T_{1}(x)$ for $f(x)=e^{-x}+e^{-2 x}$ at $a=0$ and use it to approximate $f(0.2)$. Simplify your final answer.
(b) Give an error bound on your approximation in part (a). Again, simplify your final answer.

Question 2:

(a) Use a Taylor polynomial of degree 2 to approximate $1 / 1.1$. Simplify your final answer.
(b) Give an error bound on your approximation in part (a). Again, simplify your final answer.

Question 3:

Find the Taylor series about $a=-2$ for $f(x)=1+x+2 x^{2}+3 x^{3}$. You should be able to write all terms of the series.

Question 4: Find the first four nonzero terms of the Taylor series about $a=1$ for $g(x)=\frac{3}{2+4 x}$ and state the open interval of convergence.

Question 5: Find the Maclaurin polynomial of degree 7 for $f(x)=\frac{\ln \left(1+x^{2}\right)}{x}$.

Question 6: Find the sum of the infinite series $1-\frac{\pi^{2}}{2!}+\frac{\pi^{4}}{4!}-\cdots$.

Question 7: Find the first three non-zero terms of the Maclaurin series for $f(x)=e^{-x} \ln (1+x)$.

Question 8: Use series to find the limit: $\quad \lim _{x \rightarrow 0} \frac{\sin x-x+\frac{x^{3}}{6}}{x^{5}}$

Question 9: It can be shown that

$$
\cos [\sin (x)]=1-\frac{x^{2}}{2}+\frac{5 x^{4}}{24}-\frac{37 x^{6}}{720}+\cdots
$$

for all real numbers x. Use this fact to find the first 3 non-zero terms of the Maclaurin series for $g(x)=$ $\sin \left[\sin \left(x^{2}\right)\right] \cos \left(x^{2}\right)$.

