Math 121 - Basic Derivative Formulas

G.Pugh

Oct 62017

Derivative Rules

Assumptions

In the following, suppose:

- c represents a constant (a fixed number)
- The functions $f(x)$ and $g(x)$ are both differentiable. That is,

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \quad \text { and } \quad g^{\prime}(x)=\lim _{h \rightarrow 0} \frac{g(x+h)-g(x)}{h}
$$

both exist

Constant Rule

- $\frac{d}{d x}[c]=0$
- In words: The derivative of a constant is zero
- Example: $\frac{d}{d x}[\sqrt{2 \pi}]=0$
- Proof: let $f(x)=c$. Then

$$
\frac{d}{d x}[c]=f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{c-c}{h}=\lim _{h \rightarrow 0} \frac{0}{h}=0
$$

Power Rule

- If n is any real number, $\frac{d}{d x}\left[x^{n}\right]=n x^{n-1}$
- Example: $\frac{d}{d x}\left[x^{11}\right]=11 x^{10}$
- Proof (in the case where n is a positive integer): let $f(x)=x^{n}$.

$$
\begin{aligned}
\frac{d}{d x}\left[x^{n}\right] & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{(x+h)^{n}-x^{n}}{h} \\
& =\lim _{h \rightarrow 0} \frac{x^{n}+n x^{n-1} h+\left(\text { terms with factor of } h^{2}\right)+\cdots-x^{n}}{h} \\
& =\lim _{h \rightarrow 0} n x^{n-1}+(\text { terms with factor of } h) \\
& =n x^{n-1}
\end{aligned}
$$

Power Rule, case $n=1$

- $\frac{d}{d x}[x]=1$
- Why? $\frac{d}{d x}\left[x^{1}\right]=1 \cdot x^{0}=1$

Constant Multiple Rule

- $\frac{d}{d x}[c \cdot f(x)]=c \cdot \frac{d}{d x}[f(x)]$
- In words: The derivative of a constant times a function is the constant times the derivative of the function

Constant Multiple Rule

- Proof of Constant Multiple Rule:

$$
\begin{aligned}
\frac{d}{d x}[c \cdot f(x)] & =\lim _{h \rightarrow 0} \frac{c \cdot f(x+h)-c \cdot f(x)}{h} \\
& =\lim _{h \rightarrow 0} c \cdot \frac{f(x+h)-f(x)}{h} \\
& =c \cdot \lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =c \cdot \frac{d}{d x}[f(x)]
\end{aligned}
$$

- Example: $\frac{d}{d x}\left[3 x^{11}\right]=3 \cdot \frac{d}{d x}\left[x^{11}\right]=3\left(11 x^{10}\right)=33 x^{10}$

Sum Rule

- $\frac{d}{d x}[f(x)+g(x)]=\frac{d}{d x}[f(x)]+\frac{d}{d x}[g(x)]$
- In words: The derivative of a sum is the sum of the derivatives

Sum Rule

Proof of the Sum Rule:

$$
\begin{aligned}
& \frac{d}{d x}[f(x)+g(x)] \\
= & \lim _{h \rightarrow 0} \frac{[f(x+h)+g(x+h)]-[f(x)+g(x)]}{h} \\
= & \lim _{h \rightarrow 0} \frac{[f(x+h)-f(x)]+[g(x+h)-g(x)]}{h} \\
= & \lim _{h \rightarrow 0}\left(\frac{f(x+h)-f(x)}{h}+\frac{g(x+h)-g(x)}{h}\right) \\
= & \lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}+\lim _{h \rightarrow 0} \frac{g(x+h)-g(x)}{h} \\
= & \frac{d}{d x}[f(x)]+\frac{d}{d x}[g(x)]
\end{aligned}
$$

Difference Rule

$$
\text { - } \frac{d}{d x}[f(x)-g(x)]=\frac{d}{d x}[f(x)]-\frac{d}{d x}[g(x)]
$$

- In words: The derivative of a difference is the difference of the derivatives
- Example:

$$
\begin{aligned}
\frac{d}{d x}\left[x^{3}-2 x^{1 / 2}+\frac{x}{2}\right] & =\frac{d}{d x}\left[x^{3}\right]-\frac{d}{d x}\left[2 x^{1 / 2}\right]+\frac{d}{d x}\left[\frac{1}{2} x\right] \\
& =3 x^{2}-2 \frac{d}{d x}\left[x^{1 / 2}\right]+\frac{1}{2} \frac{d}{d x}[x] \\
& =3 x^{2}-2\left(\frac{1}{2} x^{-1 / 2}\right)+\frac{1}{2}(1) \\
& =3 x^{2}-x^{-1 / 2}+\frac{1}{2}
\end{aligned}
$$

Sine and Cosine Rule

- $\frac{d}{d x}[\sin (x)]=\cos (x)$
- $\frac{d}{d x}[\cos (x)]=-\sin (x)$
- Example:

$$
\begin{aligned}
\frac{d}{d x}\left[4 \cos (x)+\frac{\sin (x)}{\pi}\right] & =4 \frac{d}{d x}[\cos (x)]+\frac{1}{\pi} \frac{d}{d x}[\sin (x)] \\
& =-4 \sin (x)+\frac{1}{\pi} \cos (x)
\end{aligned}
$$

