Curve Sketching

So far we have seen that
(i) If $f^{\prime}(x)>0$ on an interval then the graph of $y=f(x)$ is increasing on the interval;
(ii) If $f^{\prime}(x)<0$ on an interval then the graph of $y=f(x)$ is decreasing on the interval;
(iii) If $f^{\prime \prime}(x)>0$ on an interval then the graph of $y=f(x)$ is concave up on the interval;
(iv) If $f^{\prime \prime}(x)<0$ on an interval then the graph of $y=f(x)$ is concave down on the interval.

Using this information we then located relative extrema and inflection points, and we sketched a fairly accurate picture of the graph of $y=f(x)$.

We now improve our graph by making use of additional information:
(i) The x-intercepts of $y=f(x)$,
(ii) the y-intercept of $y=f(x)$,
(iii) the horizontal asymptotes of $y=f(x)$, and
(iv) the vertical asymptotes of $y=f(x)$.

Example 1

Let $f(x)=\frac{\ln (x)}{x}$. Sketch the graph of $y=f(x)$ using the
(i) x-intercepts
(ii) y-intercepts
(iii) vertical asymptotes
(iv) horizontal asymptotes
(v) intervals of increase/decrease
(vi) local extreme values
(vii) intervals of concavity
(viii) inflection points

