Question 1: Find the following derivatives (Take care to use proper notation; it is not necessary to simplify your answers):
(a) $f(x)=4 x^{3} \cos (x)$
(b) $y=\frac{\sqrt{x}}{1+\tan (x)}$
(c) $g(t)=t^{2} \sec (1 / t)$
(d) $y=\frac{x^{2}}{\left(1+\frac{1}{x^{2}}\right)}$

Question 2: Find the following derivatives (Take care to use proper notation; it is not necessary to simplify your answers):
(a) $f(x)=\cos ^{4}(1-2 x)$
(b) $y=\frac{1}{2} \cos (2 x) \sqrt{1+\sin (2 x)}$
(c) $g(t)=t^{-2}\left(4+t^{3}\right)^{7}$
(d) $y=\sqrt{\tan \left(\frac{x}{1+x}\right)}$

Question 3: Find $\frac{d y}{d x}$ by implicit differentiation:

$$
x^{4}+\sin (y)=x^{3} y^{2}
$$

Question 4: Find an equation of the tangent line to

$$
y^{4}-4 y^{2}=x^{4}-9 x^{2}
$$

at the point $(-3,2)$.

Question 5: Sand falls from a conveyor belt onto a cone shaped pile at the rate of $10 \mathrm{~m}^{3} / \mathrm{min}$. The pile of sand grows in such a way that the height of the pile is always $3 / 8$ of the base diameter. How fast is the height of the pile growing when the pile is 4 m tall? (Recall, the volume of a cone of height h and base radius r is $V=\pi r^{2} h / 3$.)

Question 6: For this question consider the function $f(x)=(1+x)^{k}$ where k is a constant.
(a) Find $L(x)$, the linearization of f at $a=0$. (Your answer should have k in it.)
(b) Use part (a) to approximate $(1.1)^{\pi}$.

Question 7: The side length of a cube was measured to be 10 cm with a maximum measurement error of $1 / 100 \mathrm{~cm}$. Estimate the maximum relative error in the calculated surface area of the cube.

