Question 1: Find the following derivatives (Take care to use proper notation; it is not necessary to simplify your answers):

(a)
$$f(x) = 4x^3 \cos(x)$$

(b)
$$y = \frac{\sqrt{x}}{1 + \tan(x)}$$

(c)
$$g(t) = t^2 \sec(1/t)$$

$$(d) y = \frac{x^2}{\left(1 + \frac{1}{x^2}\right)}$$

Question 2: Find the following derivatives (Take care to use proper notation; it is not necessary to simplify your answers):

(a)
$$f(x) = \cos^4(1-2x)$$

(b)
$$y = \frac{1}{2}\cos(2x)\sqrt{1+\sin(2x)}$$

(c)
$$g(t) = t^{-2}(4+t^3)^7$$

(d)
$$y = \sqrt{\tan\left(\frac{x}{1+x}\right)}$$

Question 3: Find $\frac{dy}{dx}$ by implicit differentiation:

$$x^4 + \sin(y) = x^3 y^2$$

[5]

Question 4: Find an equation of the tangent line to

$$y^4 - 4y^2 = x^4 - 9x^2$$

at the point (-3,2) .

Math 121 - Test 3 Nov 6 2017

Question 5: Sand falls from a conveyor belt onto a cone shaped pile at the rate of $10 \text{ m}^3/\text{min}$. The pile of sand grows in such a way that the height of the pile is always 3/8 of the base diameter. How fast is the height of the pile growing when the pile is 4 m tall? (Recall, the volume of a cone of height h and base radius r is $V = \pi r^2 h/3$.)

Question 6: For this question consider the function $f(x) = (1+x)^k$ where k is a constant.

(a) Find L(x), the linearization of f at a=0. (Your answer should have k in it.)

[4]

(b) Use part (a) to approximate $(1.1)^{\pi}$.

[1]

Question 7: The side length of a cube was measured to be 10 cm with a maximum measurement error of 1/100 cm. Estimate the maximum relative error in the calculated surface area of the cube.

[5]