Question 1: Evaluate the following limits if they exist. If a limit does not exist because it is $+\infty$ or $-\infty$, state which with an explanation of your reasoning. (Do not use L'Hospital's rule to evaluate limits.)
(a) $\lim _{x \rightarrow-2} \frac{2-|x|}{2+x}$
(b) $\lim _{x \rightarrow 0} \frac{\sin (3 x) \sin (5 x)}{x^{2} \cos (x)}$
(c) $\lim _{x \rightarrow 2 \pi^{-}} x \csc (x)$

Question 2: Find $\lim _{x \rightarrow 0} x^{2} \cos \left(\pi / x^{5}\right)$.
(Hint: Squeeze Theorem. Be sure to demonstrate that all conditions of the theorem are satisfied, and state a clear conclusion which references use of the theorem.)

Question 3: Let

$$
f(x)= \begin{cases}c x^{2}+2 x & \text { if } x<2 \\ x^{3}-c x & \text { if } x \geq 2\end{cases}
$$

Find the constant c that makes f continuous at all real numbers.

Question 4: Let $f(x)=\frac{1}{x+\sqrt{x}}$. Use the Intermediate Value Theorem to show that $f(x)=1 / 3$ for some x in the interval $[1,4]$.

Question 5: Determine $\lim _{t \rightarrow \infty} \frac{\sqrt{t}+t^{2}}{2 t-t^{2}}$.
If the limit does not exist because it is $+\infty$ or $-\infty$, state which with an explanation of your reasoning. (Do not use L'Hospital's rule to evaluate the limit.)

Question 6:

(a) Use the limit definition of the derivative to find $f^{\prime}(x)$ if $f(x)=\frac{x}{2-x}$. Neatly show all steps and use proper notation. (No credit will be given if $f^{\prime}(x)$ is found using derivative rules.)
(b) Use your result from part (a) to find the equation of the tangent line to the curve $y=x /(2-x)$ at the point where $x=-1$.

Question 7: Differentiate (that is, find the derivative of) the following functions.
(a) $f(x)=2 x^{3}-3 x^{2}+2 x+4$
(b) $y=6 \sqrt{x}+\frac{1}{\sqrt{x}}$
(c) $g(t)=(3 t+1)^{2}-\frac{\cos (t)}{\pi}$

Question 8: Suppose $c \neq 0$ and that the tangent line to $y=x^{2}$ at $x=c$ has x-intercept 2. Determine c.

