Question 1: Let

$$W = \frac{v}{2u + v}$$

where

$$u = pq\sqrt{r}$$
 and $v = p\sqrt{q}r$

Determine
$$\dfrac{\partial \textit{W}}{\partial \textit{q}}$$
 when $\textit{p}=$ 2, $\textit{q}=$ 1 and $\textit{r}=$ 4 .

[5]

Question 2: Let T(x,y) be the temperature in degrees Celcius at point (x,y), and suppose a bug crawls so that its position after t seconds is given by $x=\sqrt{1+t}$ and $y=2+\frac{1}{3}t$ where x and y are measured in centimetres. If $T_x(2,3)=4$ and $T_y(2,3)=3$, how fast is the temperature rising along the bug's path after 3 seconds? State units with your answer.

Question 3: Find the directional derivative of $f(x,y) = x^2 e^{-y}$ at the point (-2,0) in the direction toward the point (2,-3)).

[5]

Question 4: Find the maximum rate of change of $f(x, y) = x^2y + \sqrt{y}$ at the point (2, 1) and the direction in which it occurs.

Question 5: Find the equation of the tangent plane to the surface

$$x^4 + y^4 + z^4 = 3x^2y^2z^2$$

at the point (1, 1, 1).

[5]

Question 6: At what point(s) does the normal line through (1,2,1) on the ellipsoid $4x^2 + y^2 + 4z^2 = 12$ intersect the sphere $x^2 + y^2 + z^2 = 102$?

Math 200 - Test 3 Nov 7 2016

Question 7: Find all critical points of $f(x,y) = (x^2 + y^2)e^{-x}$ and classify each as either a local maximum, local minimum or a saddle point. Carefully calculate all required derivatives and keep your work organized.

Math 200 - Test 3 Nov 7 2016

Question 8: Find the dimensions of a rectangular box (that is, a conventional box with six rectangular faces) having maximum volume if the sum of the lengths of the 12 edges is a constant c. (The edges of the box are the llines where the rectangular faces meet). Explain why your solution does indeed correspond to the absolute maximum volume.

Note: The solution to this problem can be deduced using a symmetry argument, but for this question you are required to prove the result using calculus.