Question 1:

(a) Use the trapezoid rule on 4 subintervals to approximate $\int_{0}^{2 \pi} 4 \sqrt{1+\cos (x)} d x$. Simplify your final answer.
(b) It can be shown that $f(x)=4 \sqrt{1+\cos (x)}$ has second derivative $f^{\prime \prime}(x)=-\sqrt{1+\cos (x)}$ and fourth derivative $f^{(4)}(x)=\frac{\sqrt{1+\cos (x)}}{4}$. Use this information to give an error bound on your approximation in part (a). Simplify your final answer.

Question 2: Evaluate the following improper integral making proper use of any required limits:

$$
\int_{-1}^{1} \frac{x^{2}}{\sqrt{1-x^{3}}} d x
$$

Question 3: Use the comparison theorem to show that the following integral converges:

$$
\int_{1}^{\infty} \frac{2+\sin (x)}{\sqrt{x}(1+x)} d x
$$

Question 4: Find the value of c so that the region bounded by the parabolas $y=x^{2}-c^{2}$ and $y=c^{2}-x^{2}$ has area 72.

Question 5: The region in the first quadrant that is bounded by the curves $y=e^{x}, y=1$ and $x=1$ is rotated about the x-axis. Determine the volume of the resulting solid.

Question 6: The same region as in Question 5 (the region in the first quadrant bounded by $y=e^{x}, y=1$ and $x=1$) is rotated about the y-axis. Find an integral representing the volume of the resulting solid. DO NOT EVALUATE THE INTEGRAL, simply set it up.

Question 7: The same region as in Question 5 (the region in the first quadrant bounded by $y=e^{x}, y=1$ and $x=1$) is rotated about the horizontal line $y=3$. Find an integral representing the volume of the resulting solid. DO NOT EVALUATE THE INTEGRAL, simply set it up.

Question 8: Determine the volume of a cone of base radius r and height h.

Question 9: The region between the curve $y=1 / x$ and the x-axis over the interval $[1, \infty)$ is rotated about the x-axis. Determine the volume of the infinitely long solid that is generated.

