Question 1: A particle starting at initial position $s(0)=0 \mathrm{~m}$ and initial velocity of $k \mathrm{~m} / \mathrm{s}$ has acceleration at time t second of $a(t)=k \sqrt{t} \mathrm{~m} / \mathrm{s}^{2}$. Here k is a constant. Find the particle's position after 1 second.

Question 2: Use an area interpretation to find $\int_{0}^{2}|3-2 x| d x$

Question 3: Use the definition of the definite integral in the form

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x
$$

to evaluate

$$
\int_{-2}^{1}\left(1-2 x^{2}\right) d x
$$

Carefully set up the Riemann sum and clearly show the steps of your simplification.

Question 4: Find the average value of $f(x)=\pi\left(\sin (x)+\sec ^{2}(x)\right.$ over the interval $[-\pi / 4, \pi / 4]$. (State your answer as a single fraction.)

Question 5: A certain population is currently of size 20 individuals and is increasing at a rate of $r(t)=\left(1+t^{2}\right) / 3$ individuals per week. How large will the population be in three weeks time?

Question 6:
(a) Evaluate $\int_{4}^{9} \sqrt{x}-\frac{1}{\sqrt{x}} d x$.
(b) Evaluate $\int_{0}^{1} x^{10}+10^{x} d x$.

Question 7: Suppose f is a continuous function with the property that

$$
\int_{0}^{x} f(t) d t=\sin (2 x)-\int_{0}^{x} \cos (2 t) f(t) d t
$$

Find a formula for $f(x)$.

Question 8: (Substitution Method)
(a) Determine $\int \frac{x}{\left(4 x^{2}+1\right)^{5}} d x$.
(b) Evaluate $\int_{1}^{\sqrt{e}} \frac{\sin (\pi \ln x)}{x} d x$.
(c) Determine $\int \frac{e^{\sec (\sqrt{x})} \sec (\sqrt{x}) \tan (\sqrt{x})}{\sqrt{x}} d x$.

