1 **Exponentials**

General Base $a > 0$	Special Case: Base $e = 2.71828\cdots$
$a^b a^c = a^{b+c}$	$e^b e^c = e^{b+c}$
$\frac{a^b}{a^c} = a^{b-c}$	$\frac{e^b}{e^c}=e^{b-c}$
$(a^b)^c = a^{bc}$	$(e^b)^c=e^{bc}$
$\frac{d}{dx}\left[a^{x}\right]=a^{x}\ln\left(a\right)$	$rac{d}{dx}\left[e^{x} ight]=e^{x}$

Derivative:

Laws:

2 Logarithms

Definiton: $\log_a(b)$ is the power to which a is raised to give b.

Definiton: $\ln(b) = \log_e(b)$, the power to which *e* is raised to give *b*.

General Base a > 0

Laws:

Deriva

General Base
$$a > 0$$
Special Case: Base $e = 2.71828\cdots$ $\log_a(bc) = \log_a(b) + \log_a(c)$ $\ln (bc) = \ln (b) + \ln (c)$ $\log_a \left(\frac{b}{c}\right) = \log_a(b) - \log_a(c)$ $\ln \left(\frac{b}{c}\right) = \ln (b) - \ln (c)$ $\log_a(b^c) = c \log_a(b)$ $\ln (b^c) = c \ln (b)$

Change of Base:
$$\log_b(c) = \frac{\log_a(c)}{\log_a(b)}$$
 $\log_b(c) = \frac{\ln(c)}{\ln(b)}$

tive:
$$\frac{d}{dx} \left[\log_a(x) \right] = \frac{1}{x \ln(a)}$$
 $\frac{d}{dx} \left[\ln \frac{d}{dx} \right]$

$\mathsf{n}\left(x\right)] = \frac{1}{x}$

3 **Inverse Properties**

General Base $a > 0$	Special Case: Base $e = 2.71828 \cdots$
$a^{\log_a(x)} = x$	$e^{\ln(x)} = x$
$\log_a(a^x) = x$	$\ln\left(e^{x}\right)=x$